

Authorized Limit Evaluation of Spent Granular Activated Carbon Used for Vapor-Phase Remediation at the Lawrence Livermore National Laboratory Livermore, California

R. Devany, T. Utterback

January 12, 2007

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

AUTHORIZED LIMIT EVALUATION OF SPENT GRANULAR ACTIVATED CARBON USED FOR VAPOR-PHASE REMEDIATION

at the

Lawrence Livermore National Laboratory Livermore, California

prepared for

Lawrence Livermore National Laboratory Livermore, California

AUTHORIZED LIMIT EVALUATION OF SPENT GRANULAR ACTIVATED CARBON USED FOR **VAPOR-PHASE REMEDIATION**

at the

Lawrence Livermore National Laboratory Livermore, California

prepared by

Weiss Associates

5801 Christie Avenue, Suite 600 Emeryville, CA 94608

WA Job # 010-2031-4802-01

2/2/2007

Timothy Utterback, P.E.

Date

Project Engineer

Weiss Associates' work for Lawrence Livermore National Laboratory was conducted under my supervision. To the best of my knowledge, the data contained herein are true and accurate and satisfy the scope of work prescribed by the client for this project. The data, findings, recommendations, specifications or professional opinions were prepared solely for the use of Lawrence Livermore National Laboratory in accordance with generally accepted professional engineering and geologic practice. We make no other warranty, either expressed or implied, and are not responsible for the interpretation by others of the contents herein.

Robert Devany, P.G., C.E.G., CH.G. Date Senior Project Manager

CONTENTS

		Page
Sur	mmary	v
1.	Introduction	1
	1.1 Purpose	1
2.	Background	2
3.	Waste Stream Characterization	4
4.	Authorized Limit Determination	5
	4.1 Shipment, Storage, Incineration and Disposal	5
	4.2 Dose to the Public along the Transportation Route	7
	4.3 Results	8
	4.4 Uncertainty	8
5.	ALARA Evaluation	10
6.	Ground Water Impact Evaluation	
7.	. Assessment of future Remediation liabilities 1	
8.	. Coordination with Land disposal Unit Operator and State Agencies	
9.	Recommendations	
10.	. References	

TABLES

Table 1.	TSD-Dose Input Parameters
Table 2.	RESRAD Input Parameters for External Gamma Dose Rate during Shipment
Table 3.	Riskind Input Parameters for Shipment
Table 4.	Proposed Authorized Limits
Table 5.	Estimated Public Doses at the Proposed Authorized Limits
Table 6.	Comparative Costs for Alternative Authorized Limits
Table 7.	RESRAD Input Parameters for Worst Case Landfill Exposure and Ground Water Impact
Table 8.	RESRAD Results for Worst Case Landfill Exposure and Ground Water Impact

APPENDICES

Appendix A.	Certified Laboratory Results for Granular Activated Carbon Samples
Appendix B.	Clean Harbors Deer Park Facility RCRA Permit
Appendix C.	Dose Calculation Output
Appendix D.	Ground Water and Landfill Simulation Output

IV

J:JLLNL/GAC Release/ERD_GAC_Eval_fnl.doc

SUMMARY

This report provides a technical basis for establishing radiological release limits for granular activated carbon (GAC) containing very low quantities of tritium and radon daughter products generated during environmental remediation activities at Lawrence Livermore National Laboratory (LLNL). This evaluation was conducted according to the Authorized Limit procedures specified in United States Department of Energy (DOE) Order 5400.5, Radiation Protection of the Public and the Environment (DOE, 1993) and related DOE guidance documents. The GAC waste is currently being managed by LLNL as a Resource Conservation and Recovery Act (RCRA) mixed waste. Significant cost savings can be achieved by developing an Authorized Limit under DOE Order 5400.5 since it would allow the waste to be safely disposed as a hazardous waste at a permitted off-site RCRA treatment and disposal facility.

LLNL generates GAC waste during vapor-phase soil remediation in the Trailer 5475 area. While trichloroethylene and other volatile organic compounds (VOCs) are the primary targets of the remedial action, a limited amount of tritium and radon daughter products are contained in the GAC at the time of disposal.

As defined in DOE Order 5400.5, an Authorized Limit is a level of residual radioactive material that will result in an annual public dose of 100 milliroentgen-equivalent man per year (mrem/year) or less. In 1995, DOE issued additional release requirements for material sent to a landfill that is not an authorized low-level radioactive waste disposal facility. Per guidance, the disposal site will be selected based on a risk/benefit assessment under the As-Low-As-Reasonably-Achievable (ALARA) process while ensuring that individual doses to the public are less than 25 mrem in a year, ground water is protected, the release would not necessitate further remedial action for the disposal site, and the release is coordinated with all appropriate authorities. The 1995 release requirements also state that Authorized Limits may be approved by DOE field office managers without DOE headquarters' (EH-1) approval if a reasonably conservative dose assessment demonstrates that:

- Public doses will not exceed one mrem per year individually or 10 person-rem/year collectively;
- Appropriate record keeping and data collection procedures are in place;
- Copies of the release evaluation and procedures are properly maintained; and
- Coordination with all applicable state and federal agencies is documented.

Based on the above guidelines, this report uses one mrem/year for individual members of the public and 10 person-rem/year for the collective population as upper-bound doses for the determination of Authorized Limits.

Sampling and analysis conducted by LLNL in 2001 and 2006 indicate that the GAC waste stream contains residual radioactive material consisting of tritium and the radon decay products lead-210, bismuth-210 and polonium-210. Historical site information indicates that tritium contained in

the GAC is from releases associated with former DOE operations. The radon decay products appear to originate from the decay of radium-226 which occurs naturally in soil. To develop proposed Authorized Limits, the annual quantity of GAC waste was assumed to be thirty 55-gallon drums (LLNL, 2006c) delivered to the Clean Harbors Deer Park facility in La Porte, Texas. Waste disposal parameters and process information obtained from Clean Harbors' personnel and the facility RCRA permit are used as dose assessment input. Using established dose estimating models, a total effective dose equivalent of 1 mrem/year to the maximally exposed individual (MEI) corresponds to a GAC activity-concentration of 4.4E5 picocuries per gram (pCi/g) for tritium, and 1.1E5 pCi/g for lead-210, bismuth-210 and polonium-210. The MEI dose is the limiting factor in this evaluation since the collective dose at these activity-concentrations is less than 10 person- rem/year. The MEI was identified as a receiving and sampling worker at the Clean Harbors Deer Park facility.

The social, technical, economic, practical, and public policy considerations of releasing the waste GAC at an activity-concentration corresponding to the 1 mrem/year MEI dose limit were evaluated according to the ALARA process. Based on the evaluation the calculated Authorized Limits could be reduced by two orders of magnitude and still be well above the anticipated radionuclide activity-concentrations in the GAC waste stream. Reductions beyond two orders of magnitude provide diminishing value to members of the public since the excess dose at this limit is only 0.01% of the average annual radiation dose from natural sources for a typical resident in the United States (NCRP, 1987). No significant social or public policy issues were identified that would prevent a reduction in Authorized Limits. Based on DOE guidelines of \$6,000 per person-rem (DOE, 1997), a two order of magnitude reduction in Authorized Limits would reduce the potential dose-based cost burden by approximately \$45,000. There are no apparent added waste disposal costs or administrative burdens associated with this lower release limit. Thus, Authorized Limits of 4,400 pCi/g for tritium and 1,100 pCi/g for lead-210, bismuth-210 and polonium-210 are proposed under the ALARA process.

Release of the GAC waste at the proposed Authorized Limits poses no significant threat to ground water resources. The radionuclide mass (i.e., fractions of a gram per year) that may be released from incinerator stack emissions is not large enough to impact ground water quality. The radionuclides captured by the incinerator emission control systems and disposed in the onsite engineered land disposal unit will likely be contained until long after their decay to stable isotopes. A plausible worst-case release from the landfill was modeled by assuming failure of the landfill liners. This simulation predicts that the maximum tritium concentration in ground water due to presumed liner failure would be well below State of Texas regulatory limits. Lead-210, bismuth-210 and polonium-210 are predicted to decay completely before reaching ground water.

Future closure of the Clean Harbors land disposal unit should not necessitate remediation under DOE Order 5400.5 as a result of disposal of the GAC waste. The onsite land disposal unit is designed such that the limited quantity of residual tritium, lead-210, bismuth-210 and polonium-210 should be retained until long after their decay to stable isotopes. Dose and human health risk were calculated for a hypothetical residential receptor residing above the land disposal unit in the event of presumed landfill liner failure. The receptor was assumed to ingest contaminated ground water drawn from below the landfill and ingest agricultural products grown and raised using the ground water. The maximum estimated individual dose was less than 0.1 mrem/yr and the maximum estimated risk was less than 10^{-6} .

Based on discussions with representatives from the Deer Park facility (LLNL, 2006a, Clean Harbors, 2006), consultation with appropriate State of Texas agencies on the acceptability of receiving the GAC waste stream under their RCRA permit would be required. DOE headquarters personnel indicate that DOE has successfully addressed Authorized Limits with the State of Texas for other waste streams (LLNL, 2006b).

Based on this evaluation, the proposed Authorized Limits for the GAC waste stream result in a maximum dose of less than 0.1 mrem/yr to a member of the public. Disposal of the waste GAC at the Deer Park facility would be a restricted release under DOE Order 5400.5 and must conform to the assumptions and exposures scenarios used in this report. As such, the GAC must be:

- Treated and disposed at the Clean Harbors (or any future operator) facility in Deer Park Texas provided that it continues to handle, process and dispose the GAC waste in a manner consistent with the current practices and permit requirements as they are currently understood and documented in this report.
- Stored for a minimum of 24-hours after being removed from the vapor-phase treatment train to allow short-lived radon daughter products to decay.
- Shipped for disposal in amounts no greater than one 30-drum shipment in a twelve month period.

Further coordination with the disposal facility and the State of Texas is required to address the administrative feasibility of the proposed authorized release. Additionally, administrative plans will need to be developed and implemented by LLNL to ensure that appropriate record keeping and data collection procedures are in place, and copies of the release evaluation and procedures are properly maintained.

vii

1. INTRODUCTION

This report provides a technical basis for establishing radiological release limits for a granular activated carbon (GAC) waste stream containing very low quantities of tritium and radon daughter products generated during environmental remediation activities at Lawrence Livermore National Laboratory (LLNL). This evaluation was conducted according to the Authorized Limit procedures specified in United States Department of Energy (DOE) Order 5400.5, Radiation Protection of the Public and the Environment (DOE, 1993) and related DOE guidance documents (DOE, 1995, DOE, 1997 and DOE, 2002).

LLNL generates GAC waste during vapor-phase soil remediation in the Trailer 5475 area. While trichloroethylene and other volatile organic compounds (VOCs) are the primary targets of the remedial action, a limited amount of tritium and radon daughter products are contained in the GAC at the time of disposal.

1.1 Purpose

The GAC waste is currently being managed by LLNL as a Resource Conservation and Recovery Act (RCRA) mixed waste. Significant cost savings can be achieved by developing an Authorized Limit under DOE Order 5400.5 since it would potentially allow the waste to be safely disposed as a hazardous waste at a permitted off-site RCRA treatment and disposal facility.

This report:

- Summarizes applicable DOE guidelines for Authorized Limits for GAC waste containing residual radioactive material, and
- Provides technical basis for Authorized Limits applicable to incineration and permanent disposal at a specific Resource Conservation and Recovery Act (RCRA)-permitted treatment, storage and disposal facility.

This information is being provided to LLNL to support a formal Authorized Limit Application to the DOE field office managers for the subject GAC waste stream.

PLLINI, GAC RELEASEERD_GAC_EVAL_FNL DOC

2. BACKGROUND

LLNL currently generates GAC waste as a result of vapor-phase soil remediation in the Trailer 5475 area at the Livermore Site. While trichloroethylene (TCE) and other volatile organic compounds (VOCs) are the primary targets of the remedial action, a limited amount of tritium from DOE releases is retained in the waste GAC. Future ground water remediation activities may generate an additional GAC waste stream containing VOCs and tritium. Isotopic analyses of the GAC waste suggest that there are no isotopes other than tritium that may be attributed to environmental releases from DOE operations. However, the data indicate that naturally occurring radon decay products are retained on the GAC as a result of operations. Per draft DOE guidance, if DOE activities or processes significantly enhance the concentration of radionuclides in a material, the material must be evaluated under the DOE as-low-as-reasonably-achievable (ALARA) process to determine whether it is acceptable for general release (DOE, 2002).

Because the GAC waste contains a listed hazardous waste and residual radioactivity from DOE operations, LLNL currently manages the spent GAC as a mixed waste. LLNL anticipates that it will generate up to thirty 55-gallon drums of this waste per year for 20 years or more. Thus, significant cost savings may be achieved by developing an Authorized Limit under DOE Order 5400.5 since it would allow the waste to be disposed as a hazardous waste at a permitted off-site treatment and disposal facility rather than as mixed waste. As defined in DOE Order 5400.5, an Authorized Limit is a level of residual radioactive material that will result in an annual public dose of 100 milliroentgen-equivalent man per year (mrem/year) or less.

In 1995, DOE's Office of the Assistant Secretary of Environment, Safety and Health, Office of the Environment, issued additional guidelines regarding the release of material containing residual radioactive material (DOE, 1995). This guidance provides specific release requirements for material sent to a non-DOE land disposal unit that is not an authorized low-level radioactive waste disposal facility. Per guidance, the disposal site will be:

- Selected (and approved by DOE) on the basis of an assessment under the ALARA process to optimize the balance between risks and benefits including costs and collective doses, and to ensure that individual doses to the public are less than 25 mrem in a year with a goal of a few mrem in a year or less.
- Evaluated to ensure that ground water will be protected in a manner consistent with the objectives of applicable state regulations and guidelines.
- Assessed to ensure that release of the land disposal unit property would not be expected to require remediation under DOE Order 5400.5 or other applicable requirements for release of property containing residual radioactive material as a result of DOE disposals.
- Coordinated with and acceptable to the land disposal unit operator implementing the acceptance criteria, and state representatives responsible for implementing

ALLINLIGAC RELEASEERD, GAC, EVAL, FNL DOC 2

solid waste regulations, to ensure that DOE releases do not violate land disposal unit-specific radiological protection requirements.

The 1995 guidance indicates that DOE headquarters' (EH-1) approval of Authorized Limits is generally required for volumetric residual radioactive material. However, the guidance states that Authorized Limits for volumetric residual radioactive material may be approved by DOE field office managers if:

- 1. The applicable criteria above are appropriately addressed;
- 2. Based on a realistic but reasonably conservative assessment of potential doses, it is demonstrated to the satisfaction of the responsible field office manager that:
 - The release or releases of the subject material will not cause a maximum individual dose to a member of the public in excess of one mrem or a collective dose of more than 10 person-rem in a year;
 - A procedure is in place to maintain records of the releases consistent with DOE Order 5400.5 requirements, and that survey or measurement results are reported consistent with the data reporting guidelines in the November 1992 DOE radiological survey guidance and DOE/EH-173T; and
- 3. A copy of the Authorized Limits, measurements/survey protocols and procedures, supporting documentation including a statement that the ALARA process requirements have been achieved, and appropriate material documenting any necessary coordination with the state or Nuclear Regulatory Commission (NRC) are provided to the Office of Environment, EH-4 at least 40-working days prior to the effective date of the Authorized Limits.

The remaining sections of this document present characterization data, a determination of Authorized Limits, ALARA and ground water impact evaluations, future remediation liability assessment and recommendations for the GAC waste stream.

BILINUGAC RELEASEERD_GAC_EVAL_FINLDOC 3

3. WASTE STREAM CHARACTERIZATION

In 2001 and 2006, LLNL sampled GAC used for vapor-phase soil remediation in the Trailer 5475 area at the Livermore Site. The samples were analyzed by General Engineering Laboratories (GEL) of Charleston, South Carolina. GEL performed analytical tests for a wide-spectrum of natural and anthropogenic radionuclides (Appendix A). GEL is a certified laboratory under the California Department of Health Service, and Texas Commission on Environmental Quality environmental laboratory accreditation programs.

Radionuclide results received from GEL for the 2001 samples showed tritium activities ranging from 8.38 ± 1.12 pCi/g to 15 ± 1.39 pCi/g and gross beta activities ranging from 11.6 ± 3.34 pCi/g to 19.4 ± 3.88 pCi/g. Gross alpha activities ranged from 7.42 ± 2.52 pCi/g to 12.3 ± 3.35 pCi/g, and gamma spectroscopy lead-210 results ranged from 7.92 ± 4.33 pCi/g to 14.5 ± 2.76 pCi/g. The analytical results for other isotopes were either not detected or present in very low activities which appeared to represent background activities. However, no analyses of unused carbon were conducted in 2001.

On September 20, 2006, LLNL collected two samples of spent GAC from the Trailer 5475 vapor-phase soil remediation system and two samples of unused vapor-phase GAC. The unused GAC was collected from virgin material provided by two suppliers, Carbon Activated Corp. and Carbitrol. The spent GAC samples were derived from the same carbon purchased from Carbitrol.

The 2006 GAC samples were analyzed by GEL. Tritium activities in the spent GAC were 12.7 ± 7.64 pCi/g and 24.6 ± 8.51 pCi/g and gross beta activities were 31.9 ± 2.14 pCi/g and 26.0 ± 1.97 pCi/g. Gross alpha activities in the spent GAC were 13.2 ± 1.58 pCi/g and 10.1 ± 1.44 pCi/g. No other results for spent GAC samples collected in 2006 indicated significant radioactivity. However, the 2006 samples were not initially analyzed for lead-210. To confirm that lead-210 is the source of the elevated gross beta activity in the 2006 spent GAC samples, LLNL is analyzing these samples for lead-210.

Tritium was not detected in the unused GAC. Gross beta activities in unused GAC were 9.99 \pm 1.31 pCi/g and 5.49 \pm 1.47 pCi/g, and gross alpha activities were 0.978 \pm 0.512 pCi/g and 7.19 \pm 1.29 pCi/g in the Carbon Activated Corp and Carbitrol products, respectively.

The analytical results indicate used GAC contains up to 24.6 pCi/g of added tritium. Spent GAC also appears to contain up to 20 pCi/g of radon decay products (lead-210, bismuth-210 and polonium-210) based on the difference in gross beta activity between unused and spent GAC. Between 1999 and 2005, LLNL collected 21 additional GAC waste characterization samples that were analyzed for a limited suite of radiological parameters (i.e., tritium, gross alpha and beta) by their onsite California-certified laboratory. Tritium activity in the 21 additional samples ranged from 2.1 ± 60 pCi/g to 160 ± 7.1 pCi/g. The majority of the tritium results were less than 50 pCi/g, with 160 pCi/g representing the historical maximum tritium activity detected in the spent GAC.

ELLINLI/GAC RELEASEERD_GAC_EVAL_FNLDOC 4

4. AUTHORIZED LIMITS DETERMINATION

Based on DOE guidelines, this report uses one mrem/year for individual members of the public, and 10 person-rem/year for the collective population as upper-bound doses for the determination of Authorized Limits. Based on analytical data for the GAC waste generated in 2001 and 2006 (Appendix A), the GAC waste stream was assumed to contain residual radioactive material in the form of tritium and the radon decay products lead-210, bismuth-210 and polonium-210. The annual quantity of GAC waste was assumed to be thirty 55-gallon drums (LLNL, 2006c) delivered to the hazardous waste treatment, storage and disposal (TSD) facility in one shipment. Each drum was assumed to contain a net GAC weight of 106 kilograms based on the average GAC drum weight disposed by LLNL in 2005.

This evaluation is for a restricted release scenario since this report only evaluates public doses associated with the transportation to, and processing and disposal, at the Clean Harbors Deer Park facility in La Porte, Texas, and that the materials are processed in a manner that is consistent with current operations at the Deer Park facility. The current operations of the facility are documented in its RCRA permit (Appendix B), as clarified by discussions with facility personnel (Clean Harbors, 2006).

4.1 Shipment, Storage, Incineration and Disposal

The DOE-developed model TSD-DOSE version 2.22 (ANL, 1998) was used to calculate dose to drivers, treatment, storage and disposal (TSD) facility workers and members of the public exposed to incinerator emissions. TSD-DOSE is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to TSD facility workers and the off-site public from waste-handling operations. The code is intended to help develop appropriate authorized release limits for DOE waste (DOE, 2002 and ANL, 2006). The simulated exposures in this calculation included:

- Shipment of the GAC from LLNL to the Clean Harbors Deer Park facility in La Porte, Texas;
- Unloading and sampling the GAC upon arrival at the facility;
- Storage of the GAC;
- Mixing the GAC before incineration,
- Incineration of the GAC;
- Burial of the incineration waste at an on-site land disposal unit; and
- Incinerator maintenance.

Fillal, Gac releaseerd_Gac_eval_foldoc 5

The total activity (without background subtraction) per shipment per radionuclide was used as input for dose calculations. The total shipment activity per radionuclide was determined from assumed Authorized Limits (activity-concentrations) and the mass of GAC in the shipment.

The TSD-DOSE parameter assumptions are shown in Table 1. Shipment duration was based on the distance between LLNL and the Deer Park facility in La Porte, Texas (1,912 miles) and an average highway speed of 55 miles per hour. The resulting travel time (35 hours) was assumed to be distributed over four days and three nights. The driver sleeping area was assumed to be located in the tractor unit with the driver resting eight hours per night in the cab in proximity to the shipment. The GAC drums were assumed to be loaded on an open trailer bed or within a van compartment such that ten rows consisting of three drums each were packed in a staggered array with dimensions 17.6 feet long by seven feet wide by three feet tall based on standard 55-gallon drum dimensions. Only one driver was assumed to be necessary to complete the delivery and the TSD-Dose default parameters for shielding thickness and distance between the driver and the drums were used as reasonable conservative assumptions.

Weiss Associates reviewed the RCRA permit issued by the State of Texas and contacted the Clean Harbors Deer Park facility to discuss their waste process and parameters specific to their operation (Clean Harbors, 2006). Deer Park facility receiving and sampling is generally consistent with the process and assumptions in TSD-Dose. Based on the discussion with Clean Harbors the only change to receiving and sampling parameters was to reduce the five-minute sample collection time per drum to 3 minutes per drum.

Storage before processing was adjusted to reduce the distance between the worker and drum from three feet to one foot and reduce the cumulative worker time in the storage area from 60 hours to 25 hours. The facility partially inventories their waste on a weekly basis and conducts a full inventory on a monthly basis. Waste can be stored at the Clean Harbors Deer Park facility for no more than one year.

The GAC waste was assumed to undergo a mixing process prior to incineration. However, Clean Harbors indicated the drums would likely be dropped directly into the incinerator without a mixing step. If mixing were to occur, Clean Harbors said the drums would be opened remotely using a mechanical grappler with an 18-foot arm and the grappler operator would be protected from inhalation exposure with a supplied air respirator. Supplied air respirators have a minimum respiratory protection factor of 10, which was used in the mixing calculation. The grappler operator was assumed to open and empty each drum within a two-minute period and the distance between the operator and drum was assumed to equal the length of the grappler arm. The facility mixing pit has a 75-cubic yard capacity and is operated from a separate room. Mixing pit operators were assumed located 40 feet from the pit.

Two nearly identical incinerators (Trains 1 and 2) with the same stack height and diameter, and similar maximum allowable flow rates are licensed at the Clean Harbors Deer Park facility. Train 1 was selected for the model because it has the highest allowable flow rate (49,845 cubic feet per minute) based on the facility RCRA permit. Default parameters were used for incineration residue collection, but the residue collection bin dimensions were adjusted upward based on discussion with Clean Harbors.

Fillini, Gac release Fro_Gac_eval_rni, Doc 6

TSD-Dose assumes emissions from the stack are released to an urban area with a population density of 10,000 persons per square mile (ppsm). According to the 2000 Census, the population densities of La Porte and Deer Park, Texas were 1,683 ppsm and 2,753 ppsm, respectively. Collective dose to the public is directly proportional to population density. A conservative population density of 3,000 ppsm was assumed to account for potential population increases between the time of the census and incineration of the GAC. Because population density parameter adjustment is not available within TSD-Dose, the collective public dose from stack emissions was adjusted in proportion to the assumed population density.

TSD-Dose default parameters were used for burial of incineration waste at the onsite land disposal unit and for incinerator maintenance. According to Clean Harbors personnel, the incinerator ash is transported by truck to their onsite land disposal unit without the need for respirators or dust suppression during disposal because the incinerator ash has a high moisture content when it is removed from the incinerator and frequent local precipitation reduces land disposal unit dust. The Clean Harbors Deer Park facility installs a land disposal unit cover over the buried waste upon final land disposal unit closure. TSD-Dose incinerator maintenance procedures and default parameters were consistent with the description of incinerator maintenance, which is performed on a bi-annual basis.

4.2 Dose to the Public along the Transportation Route

The DOE-developed programs RESRAD version 6.3 (ANL, 2005) and Riskind version 1.11 (ANL, 1995) were used to calculate dose to the public along the transportation route. Two types of public receptors were assumed:

- Persons passed by the shipment during transport and
- Persons exposed to the stationary shipment at rest stops.

RESRAD was used to determine the gamma radiation dose rate from the shipment based on the GAC density and assumed geometry of the loaded drums (Table 2). Tritium activity was not used in this calculation because it emits only beta radiation that would be shielded by the drums. Only radon decay products (lead-210 and progeny) were assumed in the RESRAD calculation. No decay products between radon and lead-210 were assumed because the GAC waste is assumed to remain in storage at LLNL until the short-lived intermediate progeny have decayed (i.e., less than 24 hours).

The gamma radiation dose rate determined from RESRAD was used as Riskind input for public dose calculations. Riskind was designed by DOE to calculate radiological dose to members of the public along a transportation route from a shipment of radioactive material. Riskind can be used for routine transportation calculations and to determine radiological consequences in the event of an accidental collision and release of radioactive material. Only the routine transportation feature was used in this evaluation. Input parameters for the Riskind calculation are shown in Table 3. The dose to the public along the transportation route was assumed to result solely from exposure to gamma radiation. Shipment geometry was adjusted in the Riskind calculation to approximate the geometry used in RESRAD because Riskind assumes the shipment is transported in a cylinder. The same shipment length was used, but the cylinder radius was adjusted to give a volume equal to the

F:|LLNL|GAC RELEASE|ERD_GAC_EVAL_FNL.DOC

rectangular volume used in RESRAD. A 55-mile per hour (88.5 kilometer per hour) travel speed was assumed to be consistent with the speed used for the driver dose calculation and the Riskind default for interstate highway travel. The assumed distance between members of the public and passing shipments was two meters. At rest stops, members of the public were assumed located two meters from the shipment for one hour.

4.3 Results

The results of these calculations are summarized in Table 4. The calculations indicate that a tritium activity of 4.4E5 pCi/g and lead-210, bismuth-210 and polonium-210 activities of 1.1E5 pCi/g will produce a 1 mrem/year total effective dose equivalent to the maximally exposed individual (TSD receiving and sampling worker). A breakdown of the dose to each receptor after ALARA considerations (see Section 5) is shown in Table 5. The receiving and sampling worker dose is primarily due to tritium (78%) and secondarily due to lead-210 (14%) and polonium-210 (8%). The offsite individual dose (0.60 mrem/year) is slightly more than half the maximally exposed individual dose, followed by the mixing pit worker dose (0.15 mrem/year). The offsite individual dose is almost entirely due to emissions from the incinerator stack with lead-210 contributing 85% of the dose, polonium-210 contributing 15% and tritium contributing only 0.2%. The mixing pit worker dose is also due to lead-210 and polonium-210 with no significant contribution from tritium.

Based on the proposed ALARA-modified Authorized Limits, the collective public dose is 0.075 person-rem/year and the collective worker dose is 9.9E-6 person-rem/year (Table 5). The collective public dose is almost entirely due to lead-210 and polonium-210 emitted from the incinerator stack.

The dose calculations and outputs from TSD-Dose, RESRAD and Riskind calculations are provided in Appendix C.

4.4 Uncertainty

TSD-Dose version 2.22, RESRAD version 6.3 and Riskind version 1.11 are validated models that estimate dose in a conservative manner. All of the simulated exposures were well within the predictive capabilities of these programs, and conservative values were used for the modeling parameters (Tables 1 through 3). Default values were replaced with more conservative quantities when more conservative assumptions were reasonable. For example, based on descriptions of actual conditions at the Deer Park facility, the distance between workers and drums in the TSD storage area, time to open drums and empty contents into the mixing pit, the mixing pit size and residue collection bin size were given more conservative parameter values. The fraction of time spent outdoors was increased to 100% for the RESRAD calculation so that a maximum dose rate without building shielding would be used. The passing distance and rest stop distance between the shipment and public was reduced in the Riskind calculation to estimate worst-case dose rates. In addition, the dose estimates included worker exposure during sampling and mixing of the waste at the TSD facility. Based on discussions with Clean Harbors personnel (Clean Harbors, 2006), these steps will be bypassed since the drums will likely be dropped into the incinerator without opening or mixing.

BILINUGAC RELEASEERD_GAC_EVAL_FINLDOC 8

These extra steps were included to ensure that the dose estimate represents a plausible worst case condition.

Default values were only replaced with less conservative values if substantial information was available to demonstrate that the replacement was reasonable and conservative. conservative replacements were given to the waste density, time to load and secure the shipment, time to inspect, sample and inventory drums, the distance between workers and drums/waste in the mixing process, the population density surrounding the disposal site and the source area used in RESRAD to determine dose rate input for Riskind. A lower waste density was used because the model default densities are based on heavier soil/solid matricies than the LLNL-measured GAC density. The time to load and secure the shipment was reduced from the TSD-Dose default of three hours to a more realistic one hour period for the small quantity of drums involved. The time to inspect and sample drums upon receipt, and the time for workers to inspect and inventory drums in the storage area was reduced based on the process description provided by Clean Harbors (Clean Harbors, 2006). The distances between workers and the drums/waste during drum opening and waste mixing was also increased based on Clean Harbors process information. According to Clean Harbors, the drums would be opened and emptied remotely with a mechanical grappling arm if mixing is performed prior to incineration. The population density of 10,000 ppsm used in TSD-Dose was not a realistic representation of population in the industrial area surrounding the Clean Harbors Deer Park facility. US Census data from the surrounding cities of Deer Park and La Porte were compared and the highest density value was rounded up to the nearest 1,000 ppsm to conservatively estimate collective dose. The default source area used in RESRAD to determine dose rate from the drum shipment was more accurately reduced to a few square meters because the RESRAD default is 10,000 square meters.

Site-specific values gathered from the Deer Park facility RCRA permit and Houston meteorological station were used for the incinerator stack height, wind speed, exit velocity, stack diameter and surrounding building height. Doses from these specific radionuclides were not significantly sensitive to the incineration process parameters. Thus, the values used for these parameters were neither more nor less conservative than defaults. The site-specific incineration process values were used because they are well established values that accurately represent the disposal site.

Based on the discussion above, the doses derived from these calculations are expected to overestimate the actual individual and collective doses.

9 Jalini, Gac releaseerd, Gac, Eval, Fill Doc

5. ALARA EVALUATION

DOE requires that radiological exposures to the work force and to the general public are ALARA. The ALARA process, as required by DOE (DOE, 1997), takes into account social, technical, economic, practical, and public policy considerations. Based on data provided by LLNL, the expected GAC waste activity-concentrations are expected to be three or more orders of magnitude below the calculated Authorized Limit. Thus, the Authorized Limits could be lowered below the one mrem/year individual dose threshold (i.e., 4.41E5 pCi/g tritium and 1.1E5 pCi/g lead-210, bismuth-210, polonium-210) if ALARA considerations indicate justifiable reason to lower them.

Public perception is a social consideration under ALARA that may favor high Authorized Limits. The public will have a better sense of safety if the GAC waste activity-concentrations are several orders of magnitude below the Authorized Limit. There are no technical or practical considerations that favor a lower Authorized Limit. Analytical data provided by LLNL indicate the maximum tritium activity in GAC was 160 pCi/g. Based on analytical data, the Authorized Limit could be lowered by two orders of magnitude without apparent economic or technical impacts.

A lower Authorized Limit would not improve public policy compliance because the calculated limit already meets public policy goals. For example, the excess dose at a two order of magnitude reduction is only 0.01% of the average annual radiation dose from natural sources for a typical resident in the United States (NCRP, 1992). An economic evaluation of the calculated Authorized Limit and three reduced Authorized Limits is shown in Table 6. DOE recommends a cost of \$6,000 per person-rem for economic evaluations (DOE, 1997). As shown, the only cost that varies under reduced Authorized Limits is the converted dose cost. Shipping and incineration costs do not vary under lower Authorized Limits. The cost difference between alternative Authorized Limits spans approximately \$45,000.

Based on this ALARA evaluation, there are no apparent additional waste disposal costs or administrative burdens associated with lowering the release limit by two orders of magnitude. Thus, Authorized Limits of 4,400 pCi/g for tritium and 1,100 pCi/g for lead-210, bismuth-210 and polonium-210 are proposed under the ALARA process.

HILLILIGAC RELEASEERD_GAC_EVAL_FNLDOC

6. GROUND WATER IMPACT EVALUATION

Potential sources of ground water impacts were evaluated to determine whether release of the GAC waste at the proposed Authorized Limits poses a significant threat to ground water resources. The sources that may release radionuclides for potential future ground water impacts are:

- Radionuclides released from the incinerator stack when the GAC shipment is incinerated, and;
- Placement of GAC incineration waste in the facility landfill with potential future release due to failure of the landfill liner.

Emissions from the incinerator stack are addressed first, followed by an evaluation of landfill failure.

6.1 Incineration

The GAC waste stream will be treated by incineration prior to land disposal. In this process, part of the tritium, lead-210, bismuth-210 and polonium-210 mass will be emitted in highly diluted concentrations as a stack emission and part will be retained by emission controls and disposed in the facility land disposal unit. Based on the proposed tritium Authorized Limit of 4,400 pCi/g, and assuming 100% of the tritium is discharged from the stack, the annual stack discharge would be about 0.014 Curies or 1.46E-6 grams of tritium. Likewise, 100% stack discharge of lead-210, bismuth-210 and polonium-210 at the Authorized Limit of 1,100 pCi/g would result in a release of 0.0035 Curies per isotope and mass releases of:

- 4.58E-5 grams of lead-210,
- 2.82E-8 grams of bismuth-210, and;
- 7.78E-7 grams of polonium-210.

Based on these worst-case stack emissions, tritium, lead-210, bismuth-210 and polonium-210 would be sufficiently dispersed to prevent ground water impacts.

The Clean Harbors Deer Park facility incinerators are equipped with emissions control devices that will reduce the mass of lead-210 prior to release from the stack. The facility RCRA permit shows that the allowable lead feed rate into the incinerator system would be greater than the allowable emission rate by a factor of approximately 112. Thus, most of the lead entering the incinerator system would be removed by emission controls. Based on the lead Authorized Limit and 112-fold emission control reduction, the annual lead-210 stack discharge may be only 0.000031 Curies and 4.09E-7 grams. As shown in the Deer Park facility RCRA permit Table V.H.4 (Appendix

Filini/(gac release)red_gac_eval_foldoc

B), the mass of lead-210 that could be emitted based on the GAC Authorized Limit is insignificant compared to the 11.1 ton per year maximum allowable lead emission rate from the incinerator system. The remaining 0.00347 Curies and 4.54E-5 grams of lead-210 retained by emission controls are assumed to be diverted to the onsite land disposal unit. The concentration of lead in incinerator waste originating from the GAC would be far below the toxicity characterization leaching procedure limit of five milligrams per liter specified in the RCRA permit.

No information on emission control reductions is available in the Deer Park Facility RCRA permit for tritium, bismuth or polonium. The RCRA permit indicates emission control reductions are specific to the chemistry of each element and cannot be extrapolated between elements.

6.2 Landfilling

The Clean Harbors, Deer Park land disposal units are designed according to the RCRA permit with a cap, liners, and leachate collection system to prevent ground water impacts (Appendix B Section V.G). To evaluate potential ground water impacts that may result from land disposal of GAC waste, a worst-case ground water simulation was performed using RESRAD. The simulation was based on a presumed failure of a land disposal unit at the end of the permit-specified 30-year post-closure monitoring and maintenance period. The following assumptions were made:

- Complete failure of the cover drainage layer, leachate collection system and 60-mil high density polyethylene plastic (HDPE) liners at the end of the landfill post-closure monitoring and maintenance period.
- The landfill contains 70 shipments of GAC waste at the time of closure and no radioactive decay occurs between the time of disposal and landfill closure. Radioactive decay during the 30 year post-closure period was assumed.
- All of the GAC waste contains activity-concentrations equal to the proposed authorized limits.

The ground water impact simulation was based on failure of the proposed East Landfill at the Clean Harbors Deer Park Facility. Simulation was not based on the South or North Landfills because the South Landfill is closed and the North Landfill is approaching capacity and will receive little, if any incinerated GAC waste.

RESRAD was selected to estimate ground water impacts from landfill leachate. RESRAD uses a sorption-desorption, ion-exchange leaching model to estimate radionuclide leaching from the contaminated zone. The layered characteristics of a landfill including a cover, waste layer, liner, vadose zone strata and saturated zone are supported in RESRAD.

The site-specific modeling parameters used in this simulation are shown in Table 7 and the RESRAD default parameters are tabulated in the model output presented in Appendix D. Parameter values for the cover depth, source area, source thickness, landfill length parallel to aquifer flow, unsaturated Zone 1 (clay liner) thickness, clay liner hydraulic conductivity, and unsaturated Zone 2 (vadose zone soil) thickness were obtained from specifications provided in the facility RCRA permit

ALLINLIGAC RELEASEERD, GAC, EVAL, FINL DOC

for the East Landfill. The cover at the time of failure was assumed to consist of a three foot thick clay liner overlain by a two foot thick protective soil layer. The drainage layer and 60 mil HDPE liner are not included. All of the water infiltrating through the protective soil layer is assumed to infiltrate past the HDPE liner and into the clay layer without diversion by the drainage system. The source area (landfill area) is equivalent to the dimensions of the proposed East Landfill. The source thickness was calculated by dividing the East Landfill rated capacity (volume) by the landfill area. The longest dimension of the proposed East Landfill was used for the landfill length parallel to aquifer flow. Two unsaturated zones (Zone 1 and Zone 2) were simulated below the waste. Sitespecific Zone 1 parameter values were based on the clay liner minimum thickness (three feet) and maximum allowable hydraulic conductivity (10⁻⁷ centimeters per second) specified in the RCRA permit. The bottom HDPE liner and landfill leachate collection system were not included in the simulation because they were assumed failed. Leachate from the waste cell was assumed to pass through the HDPE liner without diversion by the leachate collection system. The thickness of unsaturated Zone 2 located between the clay liner and the water table was based on the permit-specified ten-foot minimum allowable distance between the lowest landfill liner and the water table.

Infiltration is a function of precipitation. The default precipitation rate of one meter per year was increased to a site-specific value of 1.29 meters per year based on the average annual rainfall in Houston between 1961 and 1990. The activity-concentrations of tritium and lead-210 in landfill waste were calculated from the total activity in seventy waste shipments containing GAC activity-concentrations equal to the authorized limits of 4,400 pCi/g and 1,100 pCi/g, respectively. The activity was assumed to be evenly distributed throughout the landfill volume. No radioactive decay was assumed between the first and last shipments. Radioactive decay was assumed to occur between landfill closure and the end of the 30 year post-closure period. Lead-210 is the longest lived isotope with a half-life of 22.3 years, followed by tritium with a 12.3 year half-life. Bismuth-210 and polonium-210 half lives are five and 138 days, respectively. Bismuth-210 and polonium-210 were assumed to each be present at a activity-concentration of 1,100 pCi/g.

The default non-dispersion modeling option was used in RESRAD to determine peak ground water concentrations from leachate impact. Under the non-dispersion assumption, leachate from the source area is delivered to ground water directly below the landfill and the activity-concentration is determined without dispersive dilution.

The ground water model results are shown in Table 8. The RESRAD results predict that tritium would reach a peak activity-concentration of 566 pCi/L in four years while lead-210 and daughters would never reach ground water before decaying completely. The difference between tritium and lead-210 concentrations in ground water is primarily due to the effects of soil/water partitioning. Tritium is modeled as tritiated water, which has no sorptivity to landfill waste or underlying soil. In the absence of a HDPE liner, tritiated water would migrate to ground water according to the infiltration rate, without sorptive retardation. Lead-210 in incinerated GAC waste is chemically identical to lead and would partition into the waste and underlying soil. Lead-210 transport rates are several orders of magnitude slower than tritium. Bismuth-210 and polonium-210 have different soil/water partitioning coefficients, but they will decay to stable lead before separating by a measurable distance in front or behind lead-210.

Texas uses the federal maximum contaminant level (MCL) of 20,000 pCi/l as their ground water goal for tritium. The model results indicate that tritium concentrations in ground water directly below the landfill will remain significantly below the MCL in the event of a major landfill failure.

Jalini, Gac releaseerd, Gac, Eval, Fill Doc

As discussed above, lead-210, bismuth-210 and polonium-210 are not expected to reach ground water prior to decaying to a stable isotope of lead.

The results of this ground water evaluation indicate release of the GAC waste at the proposed Authorized Limits poses no significant threat to ground water resources.

E;LLINL;GAC RELEASE[FRD_GAC_EVAL_FNL.DOC]

7. ASSESSMENT OF FUTURE REMEDIATION LIABILITIES

As discussed above, future remediation liabilities will be assessed in the Authorized Limits Application to ensure that release of the land disposal unit would not necessitate remediation under DOE Order 5400.5 or other applicable requirements for release of property containing residual radioactive material as a result of DOE disposals. An assessment of the potential future remediation liabilities is discussed below.

As discussed in Section 6, Ground Water Impact Evaluation, tritium, lead-210, bismuth-210 and polonium-210 contained in the GAC waste may be captured by incinerator emission controls and diverted to the land disposal unit. These isotopes will likely be contained within the RCRA permitted land disposal unit until they decay to extremely low masses of stable helium and lead.

The proposed East Land Disposal Unit is the likely location that most of the GAC incineration waste would be placed. The South Landfill will not be used because it is already closed and the North Landfill might not receive any GAC waste because it is approaching capacity. As stated in Section V.G and Table V.G.3 of the RCRA permit, the East Land Disposal Unit will be constructed with a 3-foot minimum thickness clay liner and primary and secondary 60 mil high density polyethylene (HDPE) liners. The permit minimum permeability specification is 10E-7 centimeters per second. In addition, as stated in Section V.G and Table V.G.4, the East Land Disposal Unit is designed with primary and secondary leachate collection systems consisting of 8-ounce geotextile filter fabric, sand drainage media, 8-inch HDPE leachate collection pipes and risers, and gravel sumps. The East Land Disposal Units will be designed such that the tritium, lead-210, bismuth-210 and polonium-210 will likely remain within the land disposal unit and decay to stable isotopes. The landfill will be actively monitored and maintained for 30 years after closure (post closure period). However, it is possible that the landfill could release radionuclides to the environment if the HDPE liners fail over time.

In order to assess whether a future failure of the landfill liners will result in unacceptable human exposure and result in future remediation liabilities for DOE, RESRAD dose and risk modeling was conducted. The same site-specific physical parameters and radionuclide concentrations used in the ground water modeling (Table 7) were coupled with a worst-case hypothetical residential scenario to calculate maximum potential dose and risk. The hypothetical residential receptor was assumed to reside above the East Landfill immediately after the post-closure period. RESRAD's template for a residential farmer was used to account for all possible forms of exposure. All of the drinking water used by the hypothetical resident was assumed drawn from a well with its screened interval intercepting the shallowest water bearing unit below the landfill. Home grown produce and livestock fodder were assumed grown on top of the landfill and irrigated with the ground water. Plants were assumed to absorb contamination dissolved in ground water and uptake contamination in the root zone. Livestock were assumed to ingest ground water, soil, fodder irrigated with ground water, fodder grown in contaminated root zone soil, and fodder contaminated by foliar deposition. Contaminated ground water was assumed to seep into a nearby pond and transfer to aquatic organisms. The hypothetical resident was assumed to drink ground water from the

ALLINLIGAC RELEASEERD, GAC, EVAL, FINL DOC 15

well, consume produce grown onsite, consume meat and milk from the livestock raised onsite, inhale wind blown dust from the site, ingest soil through incidental ingestion, and eat aquatic foods from a nearby pond. All of the possible exposures available in the RESRAD program were used. The default residential farm exposure parameters used in these calculations are shown in the RESRAD output presented in Appendix D.

The estimated dose and risk results for this hypothetical residential receptor are shown in Table 8. As shown, the estimated tritium dose is 0.024 mrem/yr and the estimated risk is 2.7 x 10⁻⁷. The tritium dose is primarily due to ground water ingestion (78%), with secondary contributions from home grown agricultural products (milk 10%, vegetables 8% and meat 4%,) irrigated with ground water. The model predicts rapid tritium migration to ground water as discussed above in the ground water evaluation. Peak exposure occurs at four years and is due to the ground water dependent exposure pathways. The hypothetical resident receives no tritium dose or risk from soil ingestion, particulate inhalation, or ingestion of agricultural products in contact with foliar deposition and root zone uptake. The model predicts an insignificant dose and risk due to ingestion of aquatic foods obtained from the assumed nearby pond (<10⁻⁵ mrem/yr dose and <10⁻¹⁰ risk).

The predicted doses and risks from lead-210, bismuth-210 and polonium-210 are zero. RESRAD predicts that lead-210 and its daughters decay to zero activity-concentration before reaching ground water as discussed in Section 6. The soil/dust exposure pathways contribute no measurable dose or risk.

The results of this highly conservative dose and risk assessment indicate that DOE faces no future remediation liabilities if incinerated GAC waste is disposed in the RCRA permitted landfills at the Clean Harbors Deer Park Facility.

ELLINL/GAC RELEASE/ERD_GAC_EVAL_FNLDOC

8. COORDINATION WITH LAND DISPOSAL UNIT OPERATOR AND STATE AGENCIES

As discussed above, a release needs to be coordinated with and acceptable to the land disposal unit operator implementing the waste acceptance criteria, and with state representatives responsible for implementing solid waste regulations to ensure that DOE releases do not violate land disposal unit-specific radiological protection requirements. Additionally, DOE Order 5400.5 requires that Authorized Limits "shall be consistent with limits and guidelines established by other applicable federal and state laws."

Based on preliminary discussion with representatives from the Deer Park TSD (LLNL, 2006a, Clean Harbors, 2006), the proposed facility is not able to receive NRC-licensed material. The GAC waste stream is not an NRC-licensed material. However, DOE guidance (DOE, 1995) indicates that coordination be conducted with state representatives responsible for land disposal acceptance criteria to help insure that all state requirements are met. To date, Weiss understands that coordination with the State of Texas on this matter has not been conducted. However, DOE headquarters personnel indicate that DOE has successfully addressed Authorized Limits with the State of Texas for other waste streams (LLNL, 2006b). This criterion will need to be evaluated further if LLNL decides to complete an Authorized Limit Application.

ELLINUGAC RELEASEJERD_GAC_EVAL_FNLDOC

9. RECOMMENDATIONS

Based on this evaluation, the proposed Authorized Limits for the LLNL GAC waste stream are shown in Table 4 and result in a maximum dose of less than 0.1 mrem/yr to a member of the public. Disposal of the waste GAC at the Deer Park facility would be a restricted release under DOE Order 5400.5 and must conform to the assumptions and exposure scenarios used in this report. As such, the GAC must be:

- Treated and disposed at the Clean Harbors (or any future operator) facility in Deer Park Texas provided that it continues to handle, process and dispose the GAC waste in a manner consistent with the current practices and permit requirements as they are currently understood and documented in this report.
- Stored for a minimum of 24-hours after being removed from the vapor-phase treatment train to allow short-lived radon daughter products to decay.
- Shipped for disposal in amounts no greater than one 30-drum shipment in a twelve month period.

Further coordination with the disposal facility and the State of Texas is required to address the administrative feasibility of the proposed authorized release. Additionally, administrative plans will need to be developed and implemented by LLNL to ensure that appropriate record keeping and data collection procedures are in place, and copies of the release evaluation and procedures are properly maintained.

ELLINUGAC RELEASEERD_GAC_EVAL_INLDOC

10. REFERENCES

- Argonne National Laboratory (ANL), 1995, Riskind Version 1.11, A Computer Program for Calculating Radiological Consequences and Health Risks from Transportation of Spent Nuclear Fuel, November 27, 1995.
- ANL, 1998, TSD-DOSE, A Radiological Dose Assessment Model for Treatment, Storage, and Disposal Facilities, Version 2.22.
- ANL, 2005, RESRAD for Windows Version 6.3, August 25, 2005.
- ANL, 2006, TSD-DOSE: Waste Management Dose Assessment Code http://www.ead.anl.gov/project/dsp_topicdetail.cfm?topicid=43.
- U.S. Department of Energy (DOE), 1993, DOE Order 5400.5, "Radiation Protection of the Public and Environment." January 7.
- Clean Harbors, 2006, Personal communication between Craig Elam, Clean Harbors, Inc., and Robert Devany and Timothy Utterback of Weiss Associates, December 21, 2006.
- DOE, 1995, Application of DOE 5400.5 Requirement for Release and Control of Property Containing Residual Radioactive Material. Memorandum from Raymond F. Pelletier, Director, Office of Environmental Policy and Assistance. November 17, 1995.
- DOE, 1997, Applying the ALARA Process for Radiation Protection of the Public and Environmental Compliance with 10 CFR Part 834 and DOE Order 5400.5 ALARA Program Requirements, Vols. 1 and 2, Draft, Washington D.C., April.
- DOE, 2002, Implementation Guide, Control and Release of Property with Residual Radioactive Material for use with DOE 5400.5, Radiation Protection of the Public and the Environment Applying the ALARA Process for Radiation Protection of the Public and Environmental Draft DOE G 441.1-xx, Washington D.C., May 1.
- Lawrence Livermore National Laboratory (LLNL), 2006a, E-mail from Brian Perkins of LLNL to Robert Fischer of LLNL dated August 31, 2006.
- LLNL, 2006b, E-mail from Robert Fischer of LLNL to Brian Perkins of LLNL dated August 18, 2006.
- LLNL, 2006c, E-mail from Robert Fischer of LLNL to Robert Devany of Weiss Associates dated October 3, 2006.

plinigac releasberd, Gac, eval, fini, doc

National Council on Radiation Protection and Measurements (NCRP), 1987, *Exposure of the Population in the United States and Canada from Natural Background Radiation*, NCRP Report No. 94. December 30.

FILLINI,GAC RELEASEJERD_GAC_EVAL_FINLDOC 20

TABLES

Table 1. TSD-Dose Input Parameters

Value
1.0
0.0
0.51 ^b
1
17.6 °
7 °
3 °
3
1 ^d
0.0625
7
35 ^e
0.125
2
24 ^f
0.125
3
2
0.0625
2 ^g
5
1
3
0.0833
0.5
0.05 h
10
10
3
0.167
1 ⁱ
25 ^j
3
0.0833
0.0000
18 ^k
11
0.125
1
10 ^m
40 ⁿ
0.5
12.7 °
12.7 °
12.7 °

Table 1. TSD-Dose Input Parameters (continued)

Mixing pit cover thickness (inches) 2 Incineration of Waste 100 ° Stack height (feet) 100 ° Wind speed (miles per hour) 8 ° Exit velocity (miles per hour) 20 ° Stack diameter (feet) 6 ° Surrounding building height (feet) 36 ° Collect residue in bin, average worker distance (feet) 2 Collect residue in bin, shielding thickness (inches) 0.25 Collect residue in bin, number of workers 2 Cesidue collection bin length (feet) 20 ¹ Residue collection bin height (feet) 7 ° Residue collection bin height (feet) 4 ° Burial of Incineration Waste at Onsite Landfill 7 Number of workers 1 1 Truck bed length (feet) 25 1 Truck bed width (feet) 3 2 Load and transport waste, average worker distance (feet) 5 2 Load and transport waste, duration per truckload (hours) 0.25 1 Unload waste, average worker distance (feet) 5 1 1 Unload waste, duration per truc			
Incineration of Waste 100 ° Stack height (feet) 100 ° Wind speed (miles per hour) 20 ° Exit velocity (miles per hour) 20 ° Stack diameter (feet) 6 ° Surrounding building height (feet) 36 ° Collect residue in bin, average worker distance (feet) 2 Collect residue in bin, shielding thickness (inches) 0.25 Collect residue in bin, number of workers 2 Residue collection bin length (feet) 20 ° Residue collection bin width (feet) 7 ° Residue collection bin height (feet) 4 ° Burial of Incineration Waste at Onsite Landfill 1 Number of workers 1 Truck bed length (feet) 25 Truck bed width (feet) 6 Truck bed width (feet) 3 Load and transport waste, average worker distance (feet) 5 Load and transport waste, shielding thickness (inches) 0.125 Unload waste, average worker distance (feet) 5 Unload waste, duration per truckload (hours) 0.25 Unload waste, shielding thickness (inches) 0.125	Parameter ^a Value		
Stack height (feet) 100 p Wind speed (miles per hour) 8 q Exit velocity (miles per hour) 20 r Stack diameter (feet) 6 r Surrounding building height (feet) 36 s Collect residue in bin, average worker distance (feet) 2 Collect residue in bin, average worker distance (feet) 0.25 Collect residue in bin, shielding thickness (inches) 0.125 Collect residue in bin, number of workers 2 Residue collection bin length (feet) 20 t Residue collection bin width (feet) 4 t Residue collection bin height (feet) 4 t Burial of Incineration Waste at Onsite Landfill 1 Number of workers 1 Truck bed length (feet) 25 Truck bed width (feet) 6 Truck bed width (feet) 3 Load and transport waste, average worker distance (feet) 5 Load and transport waste, shielding thickness (inches) 0.125 Unload waste, average worker distance (feet) 5 Unload waste, average worker distance (feet) 5 Unload waste, shielding thickness (inches) <td>Mixing pit cover thickness (inches)</td> <td>2</td>	Mixing pit cover thickness (inches)	2	
Wind speed (miles per hour) 8 q Exit velocity (miles per hour) 20 r Stack diameter (feet) 6 r Surrounding building height (feet) 36 s Collect residue in bin, average worker distance (feet) 2 Collect residue in bin, average worker distance (feet) 0.25 Collect residue in bin, shielding thickness (inches) 0.125 Collect residue in bin, number of workers 2 Residue collection bin length (feet) 20 t Residue collection bin width (feet) 4 t Residue collection bin height (feet) 4 t Burial of Incineration Waste at Onsite Landfill 1 Number of workers 1 Truck bed length (feet) 25 Truck bed width (feet) 3 Load and transport waste, average worker distance (feet) 5 Load and transport waste, duration per truckload (hours) 0.25 Load and transport waste, shielding thickness (inches) 0.125 Unload waste, average worker distance (feet) 5 Unload waste, average worker distance (feet) 5 Unload waste, shielding thickness (inches) 0.125 Unload waste, shielding thickness (inches) 0.12	Incineration of Waste		
Exit velocity (miles per hour) 20 ° Stack diameter (feet) 6 ° Surrounding building height (feet) 36 °s Collect residue in bin, average worker distance (feet) 2 Collect residue in bin, duration (hours) 0.25 Collect residue in bin, shielding thickness (inches) 0.125 Collect residue in bin, number of workers 2 Residue collection bin length (feet) 20 ° Residue collection bin width (feet) 7 ° Residue collection bin height (feet) 4 ° Burial of Incineration Waste at Onsite Landfill 1 Number of workers 1 Truck bed length (feet) 25 Truck bed length (feet) 3 Load and transport waste, average worker distance (feet) 5 Load and transport waste, duration per truckload (hours) 0.25 Load and transport waste, shielding thickness (inches) 0.125 Unload waste, average worker distance (feet) 5 Unload waste, average worker distance (feet) 5 Unload waste, average worker distance (feet) 5 Unload waste, duration per truckload (hours) 0.25	Stack height (feet)	100 ^p	
Stack diameter (feet) 6 f Surrounding building height (feet) 36 s Collect residue in bin, average worker distance (feet) 2 Collect residue in bin, duration (hours) 0.25 Collect residue in bin, shielding thickness (inches) 0.125 Collect residue in bin, number of workers 2 Residue collection bin length (feet) 20 t Residue collection bin height (feet) 7 t Residue collection bin height (feet) 4 t Burial of Incineration Waste at Onsite Landfill 1 Number of workers 1 Truck bed length (feet) 25 Truck bed width (feet) 6 Truck bed width (feet) 3 Load and transport waste, average worker distance (feet) 5 Load and transport waste, shielding thickness (inches) 0.25 Unload waste, average worker distance (feet) 5 Unload waste, duration per truckload (hours) 0.25 Unload waste, shielding thickness (inches) 0.125 Unload waste, shielding thickness (inches) 0.125 Unload waste, shielding thickness (inches) 0.125 Unlo	Wind speed (miles per hour)	$8^{\text{ q}}$	
Surrounding building height (feet) 36 s Collect residue in bin, average worker distance (feet) 2 Collect residue in bin, duration (hours) 0.25 Collect residue in bin, shielding thickness (inches) 0.125 Collect residue in bin, number of workers 2 Residue collection bin length (feet) 20 t Residue collection bin width (feet) 7 t Residue collection bin height (feet) 4 t Burial of Incineration Waste at Onsite Landfill 1 Number of workers 1 Truck bed length (feet) 25 Truck bed width (feet) 6 Truck bed height (feet) 3 Load and transport waste, average worker distance (feet) 5 Load and transport waste, shielding thickness (inches) 0.125 Unload waste, average worker distance (feet) 5 Unload waste, duration per truckload (hours) 0.25 Unload waste, duration per truckload (hours) 0.25 Unload waste, shielding thickness (inches) 0.125 Unload waste, duration per truckload (hours) 0.25 Unload waste, shielding thickness (inches) 0.125	Exit velocity (miles per hour)		
Collect residue in bin, average worker distance (feet) Collect residue in bin, duration (hours) Collect residue in bin, shielding thickness (inches) Collect residue in bin, number of workers Collect residue in bin, number of workers 2 Residue collection bin length (feet) Residue collection bin width (feet) Residue collection bin height (feet) Residue collection bin height (feet) Residue collection bin height (feet) Burial of Incineration Waste at Onsite Landfill Number of workers 1 Truck bed length (feet) 7 Truck bed length (feet) 6 Truck bed width (feet) 6 Truck bed height (feet) 3 Load and transport waste, average worker distance (feet) Load and transport waste, duration per truckload (hours) Load and transport waste, shielding thickness (inches) Unload waste, average worker distance (feet) Unload waste, duration per truckload (hours) Unload waste, average worker distance (feet) Unload waste, shielding thickness (inches) Unload waste, shielding thickness (inches) 1 Unload waste, shielding thickness (inches) 1 Unload waste, shielding thickness (inches) 1 Time per maintenance Number of workers 1 Time per maintenance (hours) Liquids mass (pounds) 2.5E+7 Solids mass (pounds) 2.5E+7 Airborne respirable dust concentration (mg/cu m)	Stack diameter (feet)	6 ^r	
Collect residue in bin, duration (hours) Collect residue in bin, shielding thickness (inches) Collect residue in bin, number of workers Collect residue in bin, number of workers Residue collection bin length (feet) Residue collection bin width (feet) Residue collection bin width (feet) Residue collection bin height (feet) Residue collection bin height (feet) Residue collection bin height (feet) Residue collection bin height (feet) Rumber of workers 1 Truck bed length (feet) 25 Truck bed length (feet) 6 Truck bed length (feet) 3 Load and transport waste, average worker distance (feet) Load and transport waste, average worker distance (feet) Load and transport waste, shielding thickness (inches) Unload waste, average worker distance (feet) Unload waste, average worker distance (feet) Unload waste, average worker distance (feet) Unload waste, shielding thickness (inches) Unload waste, shielding thickness (inches) Incinerator Maintenance Number of workers 1 Time per maintenance (hours) 12 Liquids mass (pounds) 2.5E+7 Solids mass (pounds) 2.5E+7 Airborne respirable dust concentration (mg/cu m) 10	Surrounding building height (feet)	36 ^s	
Collect residue in bin, shielding thickness (inches) Collect residue in bin, number of workers Residue collection bin length (feet) Residue collection bin width (feet) Residue collection bin height (feet) Rumber of workers Intruck bed length (feet) Truck bed length (feet) Truck bed width (feet) Truck bed height (feet) Load and transport waste, average worker distance (feet) Load and transport waste, duration per truckload (hours) Load and transport waste, shielding thickness (inches) Unload waste, average worker distance (feet) Unload waste, average worker distance (feet) Unload waste, average worker distance (feet) Tincinerator Maintenance Number of workers Intrinerator Maintenance Number of workers 1 Time per maintenance (hours) Liquids mass (pounds) 2.5E+7 Solids mass (pounds) 2.5E+7 Airborne respirable dust concentration (mg/cu m)	Collect residue in bin, average worker distance (feet)	2	
Collect residue in bin, number of workers Residue collection bin length (feet) Residue collection bin width (feet) Residue collection bin width (feet) Residue collection bin height (feet) Burial of Incineration Waste at Onsite Landfill Number of workers 1 Truck bed length (feet) 25 Truck bed width (feet) 6 Truck bed height (feet) 3 Load and transport waste, average worker distance (feet) Load and transport waste, duration per truckload (hours) Load and transport waste, shielding thickness (inches) Unload waste, average worker distance (feet) 5 Unload waste, average worker distance (feet) Unload waste, average worker distance (feet) 5 Unload waste, shielding thickness (inches) Unload waste, shielding thickness (inches) 1 Time per maintenance Number of workers 1 Time per maintenance (hours) 12 Liquids mass (pounds) 2.5E+7 Solids mass (pounds) 2.5E+7 Airborne respirable dust concentration (mg/cu m)	Collect residue in bin, duration (hours)	0.25	
Residue collection bin length (feet)20 tResidue collection bin width (feet)7 tResidue collection bin height (feet)4 tBurial of Incineration Waste at Onsite LandfillNumber of workers1Truck bed length (feet)25Truck bed width (feet)6Truck bed height (feet)3Load and transport waste, average worker distance (feet)5Load and transport waste, duration per truckload (hours)0.25Unload waste, average worker distance (feet)5Unload waste, average worker distance (feet)5Unload waste, shielding thickness (inches)0.125Unload waste, shielding thickness (inches)0.25Unload waste, shielding thickness (inches)0.125Incinerator Maintenance1Number of workers1Time per maintenance (hours)12Liquids mass (pounds)2.5E+7Solids mass (pounds)2.5E+7Airborne respirable dust concentration (mg/cu m)10	Collect residue in bin, shielding thickness (inches)	0.125	
Residue collection bin width (feet) Residue collection bin height (feet) Burial of Incineration Waste at Onsite Landfill Number of workers 1 Truck bed length (feet) 25 Truck bed width (feet) 6 Truck bed height (feet) 3 Load and transport waste, average worker distance (feet) 5 Load and transport waste, duration per truckload (hours) 0.25 Load and transport waste, shielding thickness (inches) 0.125 Unload waste, average worker distance (feet) 5 Unload waste, average worker distance (feet) 0.125 Unload waste, average worker distance (feet) 1 Time per maintenance Number of workers 1 Time per maintenance (hours) 12 Liquids mass (pounds) 2.5E+7 Solids mass (pounds) 10	Collect residue in bin, number of workers		
Residue collection bin height (feet) Burial of Incineration Waste at Onsite Landfill Number of workers 1 Truck bed length (feet) 25 Truck bed width (feet) 6 Truck bed height (feet) 3 Load and transport waste, average worker distance (feet) 5 Load and transport waste, duration per truckload (hours) 0.25 Load and transport waste, shielding thickness (inches) 0.125 Unload waste, average worker distance (feet) 5 Unload waste, average worker distance (feet) 0.125 Unload waste, duration per truckload (hours) 0.25 Unload waste, shielding thickness (inches) 0.125 Unload waste, shielding thickness (inches) 1 Time per maintenance Number of workers 1 Time per maintenance (hours) 12 Liquids mass (pounds) 2.5E+7 Solids mass (pounds) 10	Residue collection bin length (feet)	20 ^t	
Burial of Incineration Waste at Onsite LandfillNumber of workers1Truck bed length (feet)25Truck bed width (feet)6Truck bed height (feet)3Load and transport waste, average worker distance (feet)5Load and transport waste, duration per truckload (hours)0.25Load and transport waste, shielding thickness (inches)0.125Unload waste, average worker distance (feet)5Unload waste, duration per truckload (hours)0.25Unload waste, shielding thickness (inches)0.125Incinerator Maintenance0.125Number of workers1Time per maintenance (hours)12Liquids mass (pounds)2.5E+7Solids mass (pounds)2.5E+7Airborne respirable dust concentration (mg/cu m)10	Residue collection bin width (feet)	,	
Number of workers1Truck bed length (feet)25Truck bed width (feet)6Truck bed height (feet)3Load and transport waste, average worker distance (feet)5Load and transport waste, duration per truckload (hours)0.25Load and transport waste, shielding thickness (inches)0.125Unload waste, average worker distance (feet)5Unload waste, duration per truckload (hours)0.25Unload waste, shielding thickness (inches)0.125Incinerator Maintenance0.125Number of workers1Time per maintenance (hours)12Liquids mass (pounds)2.5E+7Solids mass (pounds)2.5E+7Airborne respirable dust concentration (mg/cu m)10	Residue collection bin height (feet)	4 ^t	
Truck bed length (feet) 25 Truck bed width (feet) 6 Truck bed height (feet) 3 Load and transport waste, average worker distance (feet) 5 Load and transport waste, duration per truckload (hours) 0.25 Load and transport waste, shielding thickness (inches) 0.125 Unload waste, average worker distance (feet) 5 Unload waste, average worker distance (feet) 5 Unload waste, duration per truckload (hours) 0.25 Unload waste, shielding thickness (inches) 0.125 Unload waste, shielding thickness (inches) 125 Incinerator Maintenance Number of workers 1 Time per maintenance (hours) 12 Liquids mass (pounds) 2.5E+7 Solids mass (pounds) 2.5E+7 Airborne respirable dust concentration (mg/cu m) 10	Burial of Incineration Waste at Onsite Landfill		
Truck bed width (feet) 6 Truck bed height (feet) 3 Load and transport waste, average worker distance (feet) 5 Load and transport waste, duration per truckload (hours) 0.25 Load and transport waste, shielding thickness (inches) 0.125 Unload waste, average worker distance (feet) 5 Unload waste, average worker distance (feet) 5 Unload waste, duration per truckload (hours) 0.25 Unload waste, shielding thickness (inches) 0.125 Incinerator Maintenance Number of workers 1 Time per maintenance (hours) 12 Liquids mass (pounds) 2.5E+7 Solids mass (pounds) 2.5E+7 Airborne respirable dust concentration (mg/cu m) 10	Number of workers	1	
Truck bed height (feet) 3 Load and transport waste, average worker distance (feet) 5 Load and transport waste, duration per truckload (hours) 0.25 Load and transport waste, shielding thickness (inches) 0.125 Unload waste, average worker distance (feet) 5 Unload waste, duration per truckload (hours) 0.25 Unload waste, shielding thickness (inches) 0.125 Unload waste, shielding thickness (inches) 125 Incinerator Maintenance Number of workers 1 Time per maintenance (hours) 12 Liquids mass (pounds) 2.5E+7 Solids mass (pounds) 2.5E+7 Airborne respirable dust concentration (mg/cu m) 10	Truck bed length (feet)	25	
Load and transport waste, average worker distance (feet)5Load and transport waste, duration per truckload (hours)0.25Load and transport waste, shielding thickness (inches)0.125Unload waste, average worker distance (feet)5Unload waste, duration per truckload (hours)0.25Unload waste, shielding thickness (inches)0.125Incinerator Maintenance1Number of workers1Time per maintenance (hours)12Liquids mass (pounds)2.5E+7Solids mass (pounds)2.5E+7Airborne respirable dust concentration (mg/cu m)10	Truck bed width (feet)		
Load and transport waste, duration per truckload (hours) Load and transport waste, shielding thickness (inches) Unload waste, average worker distance (feet) Unload waste, duration per truckload (hours) Unload waste, shielding thickness (inches) Incinerator Maintenance Number of workers 1 Time per maintenance (hours) Liquids mass (pounds) 2.5E+7 Solids mass (pounds) Airborne respirable dust concentration (mg/cu m)	Truck bed height (feet)	3	
Load and transport waste, shielding thickness (inches)0.125Unload waste, average worker distance (feet)5Unload waste, duration per truckload (hours)0.25Unload waste, shielding thickness (inches)0.125Incinerator Maintenance1Number of workers1Time per maintenance (hours)12Liquids mass (pounds)2.5E+7Solids mass (pounds)2.5E+7Airborne respirable dust concentration (mg/cu m)10	Load and transport waste, average worker distance (feet)	5	
Unload waste, average worker distance (feet) 5 Unload waste, duration per truckload (hours) 0.25 Unload waste, shielding thickness (inches) 0.125 Incinerator Maintenance Number of workers 1 Time per maintenance (hours) 12 Liquids mass (pounds) 2.5E+7 Solids mass (pounds) 2.5E+7 Airborne respirable dust concentration (mg/cu m) 10	Load and transport waste, duration per truckload (hours)	0.25	
Unload waste, duration per truckload (hours) Unload waste, shielding thickness (inches) 10.125 Incinerator Maintenance Number of workers 1 1 Time per maintenance (hours) Liquids mass (pounds) 2.5E+7 Solids mass (pounds) 2.5E+7 Airborne respirable dust concentration (mg/cu m) 10	Load and transport waste, shielding thickness (inches)	0.125	
Unload waste, shielding thickness (inches) Incinerator Maintenance Number of workers 1 Time per maintenance (hours) Liquids mass (pounds) Solids mass (pounds) 2.5E+7 Solids mass (pounds) Airborne respirable dust concentration (mg/cu m) 0.125 12 12 15 16 17 18 19 10	Unload waste, average worker distance (feet)	5	
Incinerator MaintenanceNumber of workers1Time per maintenance (hours)12Liquids mass (pounds)2.5E+7Solids mass (pounds)2.5E+7Airborne respirable dust concentration (mg/cu m)10		0.25	
Number of workers 1 Time per maintenance (hours) 12 Liquids mass (pounds) 2.5E+7 Solids mass (pounds) 2.5E+7 Airborne respirable dust concentration (mg/cu m) 10	Unload waste, shielding thickness (inches)	0.125	
Time per maintenance (hours) Liquids mass (pounds) Solids mass (pounds) Airborne respirable dust concentration (mg/cu m) 12 2.5E+7 2.5E+7 10	Incinerator Maintenance		
Liquids mass (pounds) Solids mass (pounds) Airborne respirable dust concentration (mg/cu m) 2.5E+7 10	Number of workers	1	
Solids mass (pounds) 2.5E+7 Airborne respirable dust concentration (mg/cu m) 10	Time per maintenance (hours)	12	
Airborne respirable dust concentration (mg/cu m) 10	Liquids mass (pounds)	2.5E+7	
	Solids mass (pounds)	2.5E+7	
Respiratory protection factor 50		10	
Respiratory protection factor 50	Respiratory protection factor	50	

Note

^a TSD-DOSE default parameters used.

^b Average net weight of carbon (105,725 g) per 55-gallon drum based on average net weight of drums disposed by LLNL in 2005.

c 30 drums with standard dimensions (2 ft diameter, 3 ft tall) loaded in 10 rows of 3 drums/row resulting in 17.6 feet long by seven feet wide by three feet tall load.

No more than 1 hour necessary to load and secure 30 drums.

e 35 hours to travel 1,912 mile distance between LLNL and Clean Harbors Deer Park facility in La Porte Texas at an average speed of 55 miles per hour.

f Three 8 hour-rest periods based on four days travel. Rest area located in tractor unit.

g Two workers unload, inventory, inspect and sample shipment based on discussion with Clean Harbors Deer Park facility.

^h Three minutes to inspect and sample drums based on discussion with Clean Harbors Deer Park facility.

ⁱ Workers stand within one foot of drum to scan or inventory drums.

^j 30 second scan per drum on weekly basis and two minute monthly inventory per drum based on discussion with Clean Harbors Deer Park facility.

^k Drum opened and emptied remotely using mechanical grappler. Eighteen-foot distance between worker and waste based on length of grappler arm.

Two minutes per drum to unload waste with grappler.

m Grappler operator required to use supplied air respirator based on discussion with Clean Harbors Deer Park facility.

ⁿ Waste mixed remotely.

Table 1. TSD-Dose Input Parameters (continued)

 $^{\rm o}$ 75 cubic yard mixing pit based on discussion with Clean Harbors Deer Park facility.

^p Stack Train one and two heights at Clean Harbors Deer Park facility.

^q Average annual wind speed at Houston International Airport reported by the National Climatic Data Center.

r 49,845 cfm stack flow rate and six foot stack diameter specified in Clean Harbors Deer Park facility permit.

s Highest surrounding building is three story equivalent based on discussion with Clean Harbors Deer Park facility.

^t 20-cubic yard bin based on discussion with Clean Harbors Deer Park facility.

Abbreviations

cfm cubic feet per minute

ft feet g grams

g/cu cm grams per cubic centimeter

LLNL Lawrence Livermore National Laboratory

mg/cu m milligrams per cubic meter

Table 2. RESRAD Input Parameters for External Gamma Dose Rate during Shipment

Input Parameter a	Value
Source area (m ²)	4.91 ^b
Thickness of source area (m)	2.13 ^b
Source area density (g/cm ³)	0.51 °
Lead-210 + daughters activity-concentration (pCi/g)	110,000 ^d
Fraction of time spent indoors	0 ^e
Fraction of time spent outdoors	1 ^e

Notes

Abbreviations

g/cm³ grams per cubic centimeter

 $\begin{array}{ll} m & meters \\ m^2 & square meters \\ pCi/g & picocuries per gram \end{array}$

^a RESRAD version 6.3 default parameters used unless specified.

^b Side view area and width of 5.4 m (17.6 feet) long, 0.91 m (3 feet) high, 2.13 m (7 feet) wide truck trailer load. Load dimensions are consistent with dimensions used in driver dose calculations (Table 1).

^c Source material density from average net weight of granular activated carbon (105,725 g) per 55-gallon drum based on drum net weights provided by LLNL.

^d Radon gas retained on carbon will leave lead-210 and daughters. Allowable activity-concentration is driven by individual dose to treatment storage and disposal facility receiving worker.

^e Public assumed to be outdoors during passing shipment and stops for maximum gamma radiation exposure.

Riskind Input Parameters for Shipment Table 3.

Parameter ^a	Value
Dose rate from shipment at one meter distance (mrem/yr)	218.1 ^b
Gamma fraction	1.0 °
Neutron fraction	0°
Cask length (m)	5.4 ^d
Cask radius (m)	0.788^{-d}
Traveling speed (km/hr)	88.5 ^e
Individual type	Public
Rest stop distance (km)	$0.002^{\rm \ f}$
Rest stop time (hr)	1 ^f
Passing distance (km)	0.002 ^g

Abbreviations

hr hours kilometers km kilometers per hour km/hr

meters

mrem/yr one-thousandth of a Roentgen equivalent man per year

^a Riskind default parameter, unless otherwise noted.
^b Gamma radiation dose rate one meter from shipment determined using RESRAD.

^c Shipments contain no significant neutron sources.
^d Cylinder (cask) payload is required by model. Specified cask length and radius results in a payload volume equal to the volume used in RESRAD and TSD-DOSE.

^e 55-mile per hour truck travel speed assumed. Consistent with driver dose calculation (Table 1).

Member of public at rest stop assumed to remain two-meters from shipment for one hour.

g Two-meter distance between truck shipment and public is assumed while passing public.

Table 4. Proposed A	Authorized	Limits
---------------------	------------	--------

Isotope	1 mrem/yr Dose Limit ¹ (pCi/g)	Proposed Authorized Limits ² (pCi/g)
Tritium	440,000	4,400
Lead-210	110,000	1,100
Polonium-210	110,000	1,100
Bismuth-210	110,000	1,100

milli roentgen-equivalent man per year picocuries per gram treatment storage and disposal mrem/year

pCi/g TSD

Note

1 Based on 1 mrem/year individual dose to TSD facility receiving and sampling worker.

2 Includes dose reduction under the ALARA Process. (See Section 5)

Table 5. Estimated Public Doses at the Proposed Authorized Limits

	Individual Dose 1	Collective Dose ^{1,2}
Dose to:	(mrem/year)	(person-rem/year)
Driver	9.7E-05	NA
Public from passing shipments	1.2E-08	NA
Public from shipments at rest stops	1.2E-04	NA
TSD receiving worker	0.01	NA
TSD mixing pit worker	1.5E-03	NA
TSD incineration worker	9.5E-04	NA
TSD landfill worker	2.7E-04	NA
TSD offsite individual	6.0E-03	NA
Offsite population	NA	0.075
TSD worker population	NA	9.9E-06
Dose from:		
Transport to TSD facility	9.7E-05	NA
Receiving and sampling waste	9.4E-03	NA
Storage before processing	2.5E-04	NA
Mixing prior to incineration	1.5E-03	NA
Incineration of waste	2.7E-04	NA
Burial at onsite landfill	2.3E-07	NA
Incinerator maintenance	4.3E-04	NA

Note

Abbreviations

mrem/year milli roentgen-equivalent man per year

NA not applicable

person-rem/year person roentgen-equivalent man per year

TSD treatment storage and disposal

¹ Includes dose reduction under the ALARA Process (See Section 5).

² Dose to general public primarily due inhalation of effluent from an incineration stack with secondary exposure through deposition on surrounding ground and subsequent ingestion. Collective worker population dose is the sum of individual dose to truck driver and TSD workers

	Table 6.	Comparative	Costs for	Alternative	Authorized L	Limits
--	----------	-------------	-----------	-------------	--------------	--------

		Alternative Author	ized Limits	
Cost Item	441,000 pCi/g	44,100 pCi/g	4,410 pCi/g	441 pCi/g
Shipping (\$6/ft ³)	NA	NA	NA	NA
Incineration (\$8/ft ³)	NA	NA	NA	NA
Converted Dose ¹ (\$6,000/person-rem)	\$45,000	\$4,500	\$450	\$45
Total	\$45,000	\$4,500	\$450	\$45

Note ¹Dollar-to-dose conversion from DOE, 1997.

Abbreviations

DOE U.S. Department of Energy

 ft^3 cubic feet

not applicable because shipping and incineration costs are independent of alternative authorized limit levels. NA

pCi/g picocuries per gram

person-rem person Roentgen equivalent man

Table 7. RESRAD Input Parameters for Worst Case Landfill Exposure and Ground Water Impact

Input Parameter ^a	Value
Cover depth (m)	1.5 ^b
Precipitation (m)	1.29 °
Source area (m ²)	55,798 ^d
Thickness of source area (m)	9.02 ^e
Length parallel to aquifer flow (m)	436 ^f
Unsaturated Zone 1 thickness (m)	0.914 ^g
Unsaturated Zone 1 hydraulic conductivity (m/yr)	0.0316 ^h
Unsaturated Zone 2 thickness (m)	3.05 ⁱ
Tritium activity-concentration (pCi/g)	0.23 ^j
Lead-210 + daughters ^k activity-concentration (pCi/g)	0.12 ^j

Notes

Abbreviations

cm/sec centimeters per second GAC granular activated carbon

m meters
m/yr meters per year
m² square meters
pCi/g picocuries per gram

RCRA Resource Conservation and Recovery Act

yd³ cubic yards

^a RESRAD version 6.3 default parameters used unless specified.

b Thickness of clay liner specified in facility RCRA permit (three feet) combined with protective cover layer required by RCRA (2 feet).

^c Average annual precipitation in Houston Texas between 1961 and 1990.

^d Area based on proposed East Landfill dimensions (420 feet by 1,430 feet) specified in facility RCRA permit.

^e Thickness of proposed East Landfill based on volume (658,000 yd³) and area (420 feet by 1,430 feet) specifications in RCRA permit.

^f Longest dimension (1,430 feet) of proposed East Landfill based on RCRA permit specification.

^g Thickness of clay liner specified in facility RCRA permit (three feet).

^h Maximum allowable hydraulic conductivity of clay liner (1 x 10⁻⁷ cm/sec) specified in facility RCRA permit.

¹ Minimum distance from lowest liner to ground water (ten feet) specified in facility RCRA permit.

^j Maximum tritium and lead-210 activity-concentrations in proposed East Landfill after completion of 30 year post-closure maintenance and monitoring period. Landfill assumed to contain incineration waste from 70 annual GAC shipments. Incinerator emission controls assumed to capture all tritium and lead-210 for disposal in landfill. No radioactive decay assumed prior to landfill closure. Radioactive decay assumed during 30-year post-closure period.

k polonium-210 and bismuth-210.

RESRAD Results for Worst Case Landfill Exposure and Ground Water Impact Table 8.

Output Parameter	Result	Peak Time (yr)
Maximum tritium activity-concentration in ground water (pCi/l)	566	4
Maximum lead-210 activity-concentration in ground water (pCi/l)	0 ^a	NA ^a
Maximum individual dose from tritium (mrem/yr)	$0.024^{\ b}$	4
Maximum individual dose from lead-210 + d (mrem/yr)	0 °	NA
Maximum hypothetical resident risk from tritium	2.7E-07	1
Maximum hypothetical resident risk from lead-210 + d	0 °	NA

Notes

Abbreviations

plus daughter products (polonium-210 and bismuth-210) +d

mrem/yr milli-Roentgen equivalent man per year

not applicable NA picocuries per liter pCi/l

year yr

^a lead-210 and daughters decay before reaching ground water.

b Individual tritium dose primarily due to ground water ingestion (78%), with secondary contributions from home grown agricultural products (milk 10%, vegetables 8%, meat 4%,) irrigated with ground water. c Lead-210 and daughters decay before exposure can occur.

APPENDIX A

CERTIFIED LABORATORY RESULTS FOR GRANULAR ACTIVATED CARBON SAMPLES

57566 57567 57567 57568 57568

		<i>M</i>								, <u> </u>
	C Sample mal CLP ROJECT	No Discrepancies See Green Ollen	Additional Instructions; Test fert Extended Compound Test fert Mother 12 LP 168.2	7845HUR	PKUT CARGON		SCREEN Y			Time (6/ ///5
CES COC # 9766	uired: To Normal Compared: SPECIAL PROJECT	ن ن	Additional Insur Extractul Con Method 32 Not Telp	CAB.	SPEUT	_				2/20/
CES C 976	orts age Req	FOR CES USE ONLY Condition Upon Receipt:	wnyot	2	2	Z				
	Issue Reports Data Package Client 1D	OR CE Condition	7118H	-		`,				.
<u> </u>			- Paris	×	>	>				
	22 - 22	liters	Tests/Preservation Codes APPS APPS	Z	7	>>				nture
	222		CHB Gervall	>	>	>>				Signatur
ody			258 S26 PH	~	7					B
ust	6319 5819		A M JUS	\	>	>				Received by Received by: Received by:
of C		? }	250 JUS	Z	7	>				Recai
CES Chain of Custody	Field Contact (SUNC.) LLNL Account # (6319) H. Profess Name (HOO)	Tank Volume	7440L 701088	2	7	72	d			ř (C)
Ch	Field C	Tank \	# Bonles	<u>:</u>	<u>0</u>	20)	7	i		7.0 %
$\mathbf{E}\mathbf{S}$	ime		Gen	X WS -10.	XX W5 -10-	XX W3 -(0-	1 1			0
Ċ		Z S N	Matrix Code	X	爻	X	स्			Date 72-20-00
	Tumar		RAD (Y or N)	>	.>-	7	>			15
			ВІАВ	717)	219	219	75		\	1
	2-650B		Time Sampled	2090	DE SES	715	899			W. CO.
COC Version 2.3 05/09/00	2-6		Date Time Sampled Sampled	211/02 0600 (1.12	476, Dlats 612	212 SIC 10/12	411/b; 6645 151			
C(Versi 05/(ven Cy		د	-	, ~	· ·		O 1- 30	6 01	Signature
CES	Send Results to. JUSAN GRAG IND. L. 546 phone 2-650	L- L-	Client Sample Identification	N 208027RP	W 202975	120802M	73 oz 1701 CC			Si Sampled and Relinquish d by Relinquished by Relinquished by:

See page 2 for codes and additional instructions. http://.cm. llnl.gov/ces/QA_docs/List_of_QA_Docs himl

CES phone # (925) 414-. (925) 423-8626 For document control purposes, user <u>SHALL</u> ensure that all working copies are identical to current electronic version.

	Issue Reports Data Package Required: X Normal CLP SPECIAL PROJECT Client ID FOR CES USE ONLY Condition Upon Receipt: No Discrepancies ConditionVariance	Additional Instructions: 2c32 Sample Composition					Date Time		•
dy	Field Contact LLNL Account # [6314] - 22 Project Name/DQO SAW # 60 025 ([EV!]L Tank Volume	Tests (Preservation Solds of Care Solds of C	7 2 2 2 2 2	N			Signature		
CES Chain of Custody	Counce Counce Co	#142917 105 107 107 107	~ ~	1				Received by: Received by	Received by.
Chain	Field Contact LLNL Account # Project Name/DQQ Tank Volume	Code Boiles	10. N	√ .9-			Time	DE01	
CES	E R N	Matrix Gen Code Code	-a) sm XX	×				ည	
)	Turnaround Time	RAD M2	7 7				Date	2-20 00-7	
		Bldg	1612 1612	219				7	
	\$2509-Z	Date Time Sampled Sampled	2/17/6, 0660 1012 2/10/6, 0645 1012	5/15					
COC Version 2.3 05/09/00	30,5	Date Sampled	2/17/2, (0/20) 1012 4/17/6, (0045 (012	47/6, 07 15 612				Jack L	
Ces Co	Send Results De San Caregores L. Side phone 2 655 Copy:	Client Sample Identification	1 20802 1RP.	, ⁷	Thermore which	C- 60 C-	01 Oil	Sampled and Relinquished by Relinquished by:	Relinquished by:

57567 (Frankling) 57568

ELAP Certifications #1554

.vs) 424-5355 or (975) 423-8626

of purposes, user SHALL ensure that all working copies are identical to current electronic version CES phone '

See page 2 for codes and additional instructions. Here $p_{\rm eff} = p_{\rm eff}$

COC Sample ID Listing

CES COC # 9766

CES Sample ID	Client Sample ID
57566	W208027RP
57567	W202975
57568	W208027
57569	TB021701CC
	· · · · · · · · · · · · · · · · · · ·
9	
<u></u>	

57566

COC Sample ID Listing

CES COC # 9766

CES Sample ID	Client Sample ID
57566	W208027RP
57567	W202975
57568	W208027
57569	TB021701CC
	·
_	
	1
	A Company of the State of the S
	·
	-
	·
,	
	·

CES ANALYSIS REPORT

Lawrence Livermore National Laboratory C&MS Environmental Services

Rad Screening

CES Sample ID: **57566**

Client Sample ID: W208027RP

Result	MDC	Units	Date Counted	Analyst
Not Detectable	3000	dpm/g	02-20-01	cox

MDC: Minimum Detectable Concentration

CES Procedure: SOP-CES-P541

ELAP Certification 1554

Please Note:

Rad Screening is a tool used in the CES analytical laboratory which allows for the identification of possible radioactive samples. This, in turn, helps the technical staff reduce the possibility of cross contamination through the early segregation of samples and glassware. It also identifies samples with high activity, which may require special handling or exceed building limits.

The result is not meant to be an absolute unbiased measurement since a complex sample matrix can

The result is not meant to be an absolute unbiased measurement since a complex sample matrix can cause significant interference (such as chemiluminescence).

20-Feb-2001 15:27:11 Rpt: rad_screen_rpt

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company:

Lawrence Livermore Nat'l Lab (

Address:

PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

CES

LLNL00399

LLNL001

Project:

Client ID:

Report Date: March 20, 2001

Page

2 1 of

Client Sample ID:

Sample ID:

Matrix: Collect Date: Receive Date: 57566 38223001

Misc Solid 17-FEB-01

23-FEB-01 Client

C	ollector:		Client								
Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	ystDate	Time	Batch	Method
Aercury Analysis Federal											
TCLP Hg in Solid											
Mercury	J	0.00178	0.00073	0.200	mg/L	1	AW2	03/02/01	1134	67214	1
Aetals Analysis-ICP Federa	al										
TCLP ICP Metals for Solid											
Arsenic	J	0.108	0.0333	5.00	mg/L	10	JAB	03/03/01	2004	67348	2
Barium	J	0.926	0.00101	100	mg/L	10					
Cadmium	U	-0.000987	0.00319	1.00	mg∕L	10					
Chromium	U	0.00231	0.00691	5.00	mg/L	10					
Lead	J	0.0248	0.0172	5.00	mg/L	10					
Se ¹ ium	U	0.0114	0.0492	1.00	mg/L	10					
S	U	0.00207	0.00448	5.00	mg/L	10					

The following Prep Methods were performed

lethod	Description	Analyst	Date	Time	Prep Batch
1311	SW846 1311 TCLP Leaching -FEDERAL	几	02/27/01	1615	66726
3010A	ICP-TRACE TCLP by SW846 3010A	KLD1	03/02/01	1500	67027
46 7470A	EPA 7470 Mercury Prep TCLP Liquid Federa	ARD	03/01/01	1830	67031

The following Analytical Methods were performed

Vethod Description

SW846 7470A

SW846 3010/6010B

Notes:

The Qualifiers in this report are defined as follows:

- Indicates the analyte is a surrogate compound.
- Actual result is less than amount reported
- Actual result is greater than amount reported

Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.

Indicates the compound was analyzed for but not detected above the detection limit

The above sample is reported on an "as received" basis.

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address:

PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

CES

Report Date: March 20, 2001

Page 2 of 2

Client Sample ID:

57566

Project:

LLNL00399

Sample ID:

38223001

Client ID:

LLNL001

Parameter

Qualifier

Result

DL

RL

Units

DF AnalystDate

Time Batch Method

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, Inc. standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones at 843-556-8171 Ext. 4243.

Reviewed by

Meeting today's needs with a vision for temorrow.

Certificate of Analysis

Lawrence Livermore Nat'l Lab (

Address:

PO Box 808 Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

CES

Project: Client ID: LLNL00399 LLNL001

Report Date: March 20, 2001

Page 1 of 2

Client Sample ID:

Sample ID: Matrix:

57566 38225001 Misc Solid

17-FEB-01 23-FEB-01

Collect Date:

Receive Date: Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	ystDate	Time	Batch	Method
Mercury Analysis Federal											
STLC Hg in Solid											
Mercury	υ	-0.00381	0.00146	0.004	mg/L	1	AW2	03/02/01	1222	67215	ì
4etals Analysis-ICP Federal	l										
STLC ICP Metals for Solids											
Antimony	J	0.0538	0.0269	1.00	mg/L	10	JAB	03/08/01	1525	67052	2
Arsenic		0.345	0.0333	0.100	mg/l_	10					
Barium		1.57	0.00101	0.050	mg/L	10					
Beryllium	J	0.0165	0.00155	0.050	mg/L	10					
Cadmium	U	-0.000826	0.00319	0.050	mg/L	10					
Chromium		0.0507	0.00691	0.050	mg/L	10					
Cc	J	0.0141	0.00632	0.050	mg/L	10					
Copr.	U	0.00722	0.00774	0.050	mg/L	10					
Nickel		0.0706	0.0186	0.050	mg/L	10					
Potassium		31.9	0.115	1.00	mg/L	10					
Selenium	U	0.0224	0.0492	0.100	mg/L	10					
Silver	J	0.0198	0.00448	0.050	mg/L	10					
Thallium	U	-0.00179	0.0446	0.200	mg/L	10					
Vanadium	J	0.0126	0.00702	0.050	mg/L	10					
Zinc	J	0.0275	0.0169	0.050	mg/L	10					
Molybdenum	U	-0.755	0.179	2.00	mg/L	200	HSC	03/08/01	2204	67052	3
Lead	U	-0.0563	0.0861	0.250	mg/L	50	RMJ	03/09/01	1605	67052	4

ie following Prep Methods were performed

ethod ,	Description	Analyst	Date	Time	Prep Batch
ifornia Code o	California Wet Method STLC Leaching	Л	02/25/01	1235	66475
846 3010A	ICP-TRACE TCLP by SW846 3010A	KLD1	02/28/01	1500	66976
846 7470A	EPA 7470 Mercury Prep TCLP Liquid Federa	ARD	03/01/01	1830	66977

e following Analytical Methods were performed

thod Description

> SW846 7470A SW846 3010/6010B SW846 3010/6010B SW846 3010/6010B

> > POBox 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 · Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company:

Lawrence Livermore Nat'l Lab (

Address:

PO Box 808 Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Client Sample ID:

Project:

CES

Report Date: March 20, 2001

2 of

57566

Project:

LLNL00399

Sample ID:

38225001

Client ID:

LLNL001

Parameter

Qualifier Result DL

RL

Units

DF AnalystDate Time Batch Method

2

The Qualifiers in this report are defined as follows:

- Indicates the analyte is a surrogate compound.
- Actual result is less than amount reported
- Actual result is greater than amount reported
 - Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- Indicates the compound was analyzed for but not detected above the detection limit

The above sample is reported on an "as received" basis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, Inc. standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones at 843-556-8171 Ext. 4243.

POBox 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 ° Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

PO Box 808 Address:

Mailstop L-232

Livermore, CA 94551

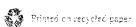
Debbie Montero Contact:

Project: CES

Report Date: March 20, 2001

Page 1 of 8

Proiect:


LLNL00399 Client ID: LLNL001

Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector:

57566 38226001 Misc Solid 17-FEB-01 23-FEB-01 Client

			`	- MCIN								
Parameter	Qualifier	Result	-	DL	RL	Units	DF	Anal	ystDate	Time	Batch	Method
lectrode Analysis Federa	al											
SW9045C Corrosivity(pH	1<2or>14)											
Corrosivity		9.75		0.010	0.100	SU	1	VHI	02/24/01	1345	66453	1
ravimetric Solids												
ASTM D 2216 % Moistur	e Federal											
Moisture		1.81				percent		COBI	02/26/01	1714	66601	2
alogen Analysis Federal										• • • •		_
SW9023 TOX (Extract. H												
Extractable Organic	iatogenj	18600		179	750	mg/kg	50	LS	03/01/01	1645	66916	3
Halogens		18000		179	750	ing/kg	50	LJ	03/01/01	1045	00010)
erc \nalysis Federal	1											
•												
747. Id Vapor Hg in S	ona U	0.0672		0.044	0.100	n	10		02/20/01	1520	((0/7	
Mercury	=	-0.0673		0.044	0.100	mg/kg	10	AWZ	02/28/01	1520	00807	4
etals Analysis-ICP Fede												
5010 TAL Metals Soil Fed												
Antimony	U	0.0608		0.456	5.00	mg/kg	2	HSC	03/07/01	0012	66844	5
Barium		69.2		0.0285	1.00	mg/kg	2					
Beryllium		3.46		0.0147	0.481	mg∕kg	2					
Cadmium	U	-0.0243		0.0249	1.00	mg/kg	2					
Chromium	_	5.20		0.419	3.00	mg/kg	2					
Cobalt	J	4.54		0.105	5.00	mg/kg	2					
Copper	j	3.69		0.0483	5.00	mg/kg	2					
Lead	j	1.13		0.327	5.00	mg/kg	2					
Molybdenum	J	0.533		0.122	3.00	mg/kg	2					
Nickel	,	22.2		0.191	3.00	mg/kg	2					
Potassium Selenium	J J	20.8 0.336		1.66 0.260	50.0 1.00	mg/kg	2					
Silver	U	0.336		0.260	2.00	mg/kg	2					
Thallium	Ü	-0.0374		0.111	5.0 0	mg/kg mg/kg	2 2					
Vanadium	O	6.89		0.308	5.00	mg/kg	2					
Arsenic	J	4.93		0.114	5.00	mg/kg	2	JAB	03/07/01	1150	66844	6
Zinc	j	4.71		0.260	5.00	mg/kg	_		03/09/01		68154	8
d Alpha Spec	,	4.71		0.200	3.00	III G K G	L	1150	03/07/01	0403	00154	U
•	** *											
Alphaspec Am241, Cm, so		0.0074		0.150		Q1.						
Americium-241	U	0.0374	+/-0.0718	0.153	1.00	pCi/g		ЛE	03/05/01	1133	6694 9	9
Curium-242	U	0.0464	+/-0.076	0.139	1.00	pCi∕g						
Curium-243/244	U	0.00689	+/-0.0533	0.171	1.00	pCi/g						
Curium-245/246	U	-0.00685	+/-0.0137	0.151	1.00	pCi/g						

POBox 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 · Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

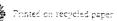
PO Box 808 Address:

Mailstop L-232 Livermore, CA 94551

Debbie Montero

Contact: Project:

Report Date: March 20, 2001


Page 2 of 8

Client Sample ID: Sample ID:

57566 38226001 Project: Client ID:

LLNL00399 LLNL001

Parameter	Qualifier	Resul	t	DL	RL	Units	DF	Anal	ystDate	Time	Batch	Method
ad Alpha Spec				·					<u></u>			
Alphaspec Pu, solid												
Plutonium-238	U	0.00941	+/-0.0243	0.0451	0.100	pCi/g		ЛE	03/03/01	1238	66950	10
Plutonium-239/240	U	0.00314	+/-0.0188	0.0386	0.100	pCi/g						
Alphaspec Th, solid												
Thorium-228		0.428	+/-0.144	0.121	1.00	pCi/g		ЛE	03/06/01	1823	66952	11
Thorium-230		0.941	+/-0.219	0.0718	1.00	pCi/g		•				
Thorium-232		0.309	+/-0.110	0.0251	00.1	pCi/g						
Alphaspec U, solid												
Uranium-233/234		0.571	+/-0.248	0.199	1.00	pCi/g		HOTI	03/05/01	1119	66956	12
Uranium-235/236	U	0.0998	+/-0.107	0.162	1.00	pCi/g		1.0,1	02, 03, 01	,	00750	12
Uranium-238	Ü	0.472	+/-0.221	0.161	1.00	pCi/g						
ad Gamma Spec		• • • • •				F-28						
Gammaspec, Gamma, solid												
A m-228	υ	0.00	+/-0.213	0.248	0.500	pCi/g		CRB	03/05/01	2318	67061	13
Ancium-241	Ŭ	-0.0213	+/-0.0375	0.0539	0.200	pCi/g		CIND	05,05,01	2310	07001	15
Antimony-124	Ŭ	-0.0104	+/-0.035	0.0558	0.050	pCi/g						
Antimony-125	Ü	0.0219	+/-0.0731	0.121	0.100	pCi/g						
Barium-133	Ū	-0.0121	+/-0.0356	0.0512	0.050	pCi/g						
Barium-140	U	-0.0148	+/-0.228	0.369	0.200	pCi/g						
Beryllium-7	U	-0.159	+/-0.269	0.430	0.500	pCi/g						
Bismuth-212		0.468	+/-0.307	0.403	0.500	pCi/g						
Bismuth-214		0.568	+/-0.161	0.096	0.100	pCi/g						
Cerium-139	U	-0.0282	+/-0.020	0.030	0.050	pCi/g						
Cerium-141	U	0.0352	+/-0.0793	0.0607	0.050	pCi/g						
Cerium-144	U	0.0797	+/-0.123	0.198	0.500	pCi/g						
Cesium-134	U	0.00304	+/-0.0333	0.0471	0.050	pCi/g						
Cesium-136	U	-0.0727	+/-0.0983	0.157	1000	pCi/g						
Cesium-137	U	0.0232	+/-0.0324	0.0532	0.050	pCi/g						
Chromium-51	U	-0.232	+/-0.302	0.452	0.500	pCi/g						
Cobalt-56	U	-0.0199	+/-0.0346	0.0566	0.050	pCi/g						
Cobalt-57	U	0.00	+/-0.0195	0.0241	0.050	pCi/g						
Cobalt-58	U	-0.00464	+/-0.0335	0.056	0.050	pCi/g						
Cobalt-60	U	-0.00431	+/-0.033	0.054	0.050	pCi/g						
Europium-152	U	0.0364	+/-0.0775	0.121	0.100	pCi/g						
Europium-154	U	0.0505	+/-0.0908	0.155	0.500	pCi/g						
Europium-155	U	0.0323	+/-0.0588	0.0948	0.500	pCi/g						
Iridium-192	U	0.0108	+/-0.0271	0.0422	0.100	pCi/g						
Iron-59	U	-0.0366	+/-0.0727	0.118	0.100	pCi/g						
Lead-210		12.3	+/-1.61	0.536	5.00	pCi/g						
Lead-212		0.366	+/-0.088	0.0612	0.100	pCi/g						
Lead-214	••	0.686	+/-0.139	0.0815	0.100	pCi/g						
Manganese-54	U	-0.00853	+/-0.0313	0.0519	0.100	pCi/g						

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

PO Box 808 Address:

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

CES

Page 3 of 8

Client Sample ID: Sample ID:

57566 38226001 Project: Client ID:

LLNL00399 LLNL001

Report Date: March 20, 2001

Parameter	Qualifier	Resul	t	DL	RL	Units	DF	Anal	ystDate	Time	Batch	Method
tad Gamma Spec										-		
Gammaspec, Gamma, solid												
Mercury-203	U	0.00174	+/-0.0303	0.0471	0.050	pCi/g						
Neodymium-147	Ü	0.0936	+/-0.495	0.810	1000	pCi/g						
Neptunium-239	U	0.116	+/-0.111	0.177	5.00	pCi/g						
Niobium-94	Ü	0.0267	+/-0.035	0.0486	1.00	pCi/g						
Niobium-95	U	0.0251	+/-0.0439	0.0713	0.050	pCi/g						
Potassium-40	U	0.340	+/-0.702	0.493	0.500	pCi/g						
Promethium-144	υ	-0.0158	+/-0.0368	0.0501	0.050	pCi/g						
Promethium-146	U	-0.0113	+/-0.0352	0.0569	0.050	pCi/g						
Radium-228	U	0.00	+/-0.213	0.248	0.500	pCi/g						
Ruthenium-106	Ü	-0.101	+/-0.278	0.441	0.500	pCi/g						
Silver-110m	Ū	-0.0159	+/-0.0296	0.0465	0.050	pCi/g						
Sodium-22	Ū	0.0181	+/-0.0325	0.0554	0.050	pCi/g						
Thallium-208	Ŭ	0.00	+/-0.0714	0.0654	0.050	pCi/g						
T n-230	O	0.568	+/-0.161	0.096	1.00	pCi/g						
The .um-234	υ	0.00	+/-1.95	0.973	5.00	pCi/g						
Tin-113	Ü	-0.00656	+/-0.0333	0.0545	0.050	pCi/g						
Uranium-235	Ŭ	0.153	+/-0.248	0.237	0.500	pCi/g						
Uranium-238	Ŭ	0.00	+/-1.95	0.973	1.00	pCi/g						
Yttrium-88	Ŭ	-0.00366	+/-0.030	0.0513	0.050	pCi/g						
Zinc-65	Ü	-0.0472	+/-0.0794	0.109	0.100	pCi∕g						
Zirconium-95	Ü	-0.00703	+/-0.064	0.102	0.100	pCi/g pCi/g						
ad Gas Flow	O	-0.00703	17-0.004	0.102	0.100	PCDE						
GFPC, Gross A/B, solid												
Alpha		12.3	+/-3.35	3.08	4.00	pCi/g		JEN	03/12/01	1902	66939	14
Beta		19.4	+/-3.88	5. 6 3	10.0	pCi/g						
ad Liquid Scint												
LSC, Tritiurh Dist, solid												
Tritium		8.38	+/-1.12	1.38	2.00	pCi/g		CAFI	03/03/01	1001	66518	15
apid Flow Analysis Federal		0.50	1, 1.12	1.50	2.00	реве		Cilli	03/03/01	1001	00510	13
-												
SW 7.3.3 Reactivity, Releasable												
Reactive Releasable Cyanide	U	-5.1		13.8	25000	ug/kg	1	ADF	03/01/01	1056	66815	16
:mi-Volatiles-GC/MS Federa]											
TCLP BNA SOLID 8270C 351	0C											
1.2-Dichlorobenzene	_	0.00		8.15	50.0	ug/L	1	JWF	03/05/01	2009	67149	17
1,4-Dichlorobenzene		0.00		0.00915	0.750	mg/L	1	,,,,	03/03/01	2007	0,142	• *
2,3,4,6-Tetrachlorophenol		0.00		5.65	50.0	ug/L	1					
2,4,5-Trichlorophenol		0.00		0.0059	40.0	mg/L	1					
2,4,6-Trichlorophenol		0.00		0.0056	0.200	mg/L	1					
2,4,0-111cmorophenoi 2,4-Dinitrotoluene		0.00		0.0036	0.200		-					
Hexachlorobenzene		0.00			0.130	mg/L	1					
TEXACIDO OCCUZENE		0.00		0.00535	0.130	mg/L	1					

Meeting today's needs with a vision for tomorrow

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

PO Box 808 Address:

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

Report Date: March 20, 2001

Page 4 of 8

Project:

Client Sample ID: Sample ID:

57566 38226001

LLNL00399 LLNL001 Client ID:

Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
emi-Volatiles-GC/MS Feder	ral									
TCLP BNA SOLID 8270C 3	5 10C									
Hexachlorobutadiene		0.00	0.0088	0.100	mg/L	1	•			
Hexachloroethane		0.00	0.0085	0.300	mg/L	1				
Methoxychlor		0.00	5.10	50.0	ug/L	1				
Nitrobenzene		0.00	0.0071	0.200	mg/L	1				
Pentachlorophenol		0.00	0.0079	10.0	mg/L	1				
Phenol		0.00	4.20	50.0	ug/L	}				
Pyridine		0.00	0.011	0.500	mg/L	1				
bis(2-Chloroethyl) ether		0.00	7.00	50. 0	ug/L	1				
m,p-Cresols		0.00	0.00535	20.0	mg/L	1				
o-Cresol		0.00	0.0063	20.0	mg/L	1				
emi-Volatiles-PCB Federal					_					
8082/3550B PCB soil-Fed										
Ar1016	U	0.00	0.790	3.33	ug/kg	ì	MM 03/02/01	0700	67057	18
Aن -1221	υ	0.00	2.82	3.33	ug/kg	l				
Aroclor-1232	υ	0.00	0.727	3.33	ug/kg	1				
Aroclor-1242	U	0.00	1.67	3.33	ug/kg	}				
Aroclor-1248	U	0.00	0.907	3.33	ug/kg	1				
Aroclor-1254	U	0.00	1.37	3.33	ug/kg	1				
Aroclor-1260	U	0.00	1.43	3.33	ug/kg	1				
lids Analysis Federal										
EPA 160.3 Mod. Solids, Tot	al									
Total Solids		973000	120	200	mg/kg		TSM 02/26/01	1412	66511	22
ectrometric Analysis Fede	ral									
W846-7.3.4 Sulfide, Reactiv	ve									
Reactive Releasable Sulfide	U	0.010	0.115	50.0	mg/kg	1	AAT 02/26/01	1602	66609	23
latile Organics Federal										
EL 8260B Method List Soil	l Fed									
1,1,1,2-Tetrachloroethane	U	0.00	40.0	100	ug/kg	50	CDS1 03/01/01	1359	66921	24
1,1,1-Trichloroethane	J	56.4	29.0	100	ug/kg	50				
1,1,2,2-Tetrachloroethane	U	0.00	30.0	100	ug/kg	50				
1,1,2-Trichloroethane	U	0.00	36.0	100	ug/kg	50				
,1-Dichloroethylene	U	0.00	26.2	100	ug/kg	50				
,1-Dichloropropene	υ	0.00	32.0	100	ug/kg	50				
,2,3-Trichlorobenzene	υ	0.00	47.0	100	ug/kg	50				
,2,3-Trichloropropane	U	0.00	31.0	100	ug/kg	50				
,2,4-Trichlorobenzene	U	0.00	40.0	100	ug/kg	50				
,2,4-Trimethylbenzene	U	0.00	41.0	100	ug/kg	50				
,2-Dibromo-3-	U	0.00	47.0	1 0 0	ug/kg	50				
hloropropane										
,2-Dibromoethane	U	0.00	32.0	100	ug/kg	50				

PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407

(843) 556-8171 • Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

PO Box 808 Address:

Mailstop L-232

Livermore, CA 94551

Debbie Montero Contact:

Project: CES Report Date: March 20, 2001

Page 5 of 8

Project:

LLNL00399 LLNL001

Client Sample ID: Sample ID: 57566 38226001 Client ID:

Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
'olatile Organics Federal										
GEL 8260B Method List So	ril Fed									
1,2-Dichlorobenzene	U	0.00	44.0	100	ug/kg	50				
1,2-Dichloropropane	U	0.00	32.0	100	ug/kg	50				
1,3,5-Trimethylbenzene	U	0.00	42.0	100	ug/kg	50				
1,3-Dichlorobenzene	U	0.00	42.0	100	ug/kg	50				
1,3-Dichloropropane	U	0.00	33.0	100	ug/kg	50				
1,4 Dichlorobenzene	U	0.00	40.0	100	ug/kg	50				
2,2-Dichloropropane	U	0.00	30.0	100	ug/kg	50				
2-Butanone	U	0.00	76.0	500	ug/kg	50				
2-Chloroethylvinyl ether	υ	0.00	93.0	500	ug/kg	50				
2-Chlorotoluene	υ	0.00	42.0	100	ug/kg	50				
2-Hexanone	υ	0.00	94.0	500	ug/kg	50				
4-Chlorotoluene	U	0.00	40.0	100	ug/kg	50				
4-lsc-ropyltoluene	U	0.00	40.0	100	ug/kg	50				
4- 1-2 pentanone	U	0.00	134	500	ug/kg	50				
Aceione	U	0.00	100	500	ug/kg	50				
Benzene	U	0.00	39.0	100	ug/kg	50				
Bromobenzene	U	0.00	41.0	100	ug/kg	50				
Bromochloromethane	U	0.00	46.0	100	ug/kg	50				
Bromodichloromethane	U	0.00	35.0	100	ug∕kg	50				
Bromoform	U	0.00	36.0	100	ug/kg	50				
Bromomethane	U	0.00	31.0	100	ug/kg	50				
Carbon disulfide	U	0.00	62.0	500	ug/kg	50				
Carbon tetrachloride		1350	26.0	100	ug/kg	50				
Chlorobenzene	U	0.00	40.0	100	ug/kg	50				
Chloroethane	U	0.00	28.0	100	ug/kg	50				
Chloromethane	U	0.00	35.0	100	ug/kg	50				
Dibromochloromethane	U	0.00	41.0	100	ug/kg	50				
Dibromomethane	U	0.00	34.0	100	ug/kg	50				
Dichlorodifluoromethane		526	18.0	100	ug/kg	50				
Ethylbenzene	U	0.00	35.0	100	ug/kg	50				
-lexachlorobutadiene	U	0.00	41.0	100	ug/kg	50				
sopropylbenzene	U	0.00	35.0	100	ug/kg	50				
Aethylene chloride		828	44.0	500	ug/kg	50				
Japhthalene	U	0.00	29.0	100	ug/kg	50				
tyrene	U	0.00	32.0	001	ug/kg	50				
'etrachloroethylene	U	0.00	40.0	100	ug/kg	50				
'oluene	U	0.00	50.0	100	ug/kg	50				
'richlorofluoromethane		515	37.0	100	υ g/kg	50				
'inyl acetate	U	0.00	77.0	500	υg/kg	50				
'inyl chloride		371	30.0	100	ug/kg	50				
is-1,2-Dichloroethylene		1960	41.0	100	ug/kg	50				
s-1,3-Dichloropropylene	U	0.00	28.0	100	ug/kg	50				

PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407

(843) 556-8171 c Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address:

PO Box 808

Mailstop L-232

Livermore, CA 94551

Client Sample ID:

Contact:

Debbie Montero

Sample ID:

Project:

CES

57566 38226001 Report Date: March 20, 2001

Page 6 of 8

Project: Client ID:

LLNL00399 LLNL001

Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
olatile Organics Federal										
GEL 8260B Method List Soi	il Fed									
m,p-Xylenes	U	0.00	70.0	200	ug/kg	50				
n-Butylbenzene	U	0.00	41.0	100	ug/kg	50				
n-Propylbenzene	U	0.00	35.0	100	ug/kg	50				
o-Xylene	U	0.00	36.0	100	ug/kg	50				
sec-Butylbenzene	U	0.00	44.0	100	ug/kg	50				
tert-Butylbenzene	U	0.00	30.0	100	ug/kg	50				
trans-1,2-Dichloroethylene		848	37.0	100	ug/kg	50				
trans-1,3-	U	0.00	24.0	100	ug/kg	50				
Dichleropropylene										
1,1-Dichloroethane		74900	16400	40000	ug∕kg	20000	CDS1 03/02/0	1410	66921	25
1,2-Dichloroethane		53200	10800	40000	ug/kg	20000				
Chloroform		2720000	18800	40000	ug/kg	20000				
Trickloroethylene	J	31500	28800	40000	ug/kg	20000				
T: otrifluoroethane	U	0.00	180000	200000	ug/kg	20000				
'et Cuemistry General Fed-	eral									
SW9095 Paint Filter Test Fe	eder									
Paint Filter		PASS					AAT 03/01/01	l 1609	67131	26

the following Prep Methods were performed

hod	Description	Analyst	Date	Time	Prep Batch
Soil Prep	Ash Soil Prep EPI A-021,A-021B,A-026	CCM1	02/28/01	1026	66623
oil Prep	Dry Soil Prep EPI A-021,A-021B,A-026	WEO	02/26/01	0842	66493
1311	SW846 1311 TCLP Leaching	几	02/27/01	1615	66727
3050B	846 3050BS PREP	HSC	03/08/01	1400	68021
3050B	846 3050BS PREP	KLD1	02/27/01	1300	66677
3510C	3510C BNA TCLP Prep-8270C Analysis Fed	AEJ	03/01/01	0800	67016
3550B	3550B PCB Prep Soil FED	RDH	02/28/01	2140	66920
5 50 B	3550B PCB Prep Soil FED	RDH	03/02/01	1919	67197
7.3.3 Pr	SW 7.3.3 Reactivity, Releasable Cyanide-	TEMP	02/26/01	1717	66523
7.3.4 Mod	SW846-7.3.4 Sulfide, Reactive-Releasabl	AAT	02/26/01	1403	66608
7471A	EPA 7471 Mercury Prep Soil	ARD	02/27/01	1800	66624
9023 Pr	SW 9023 Halogen, Extractable(TOX) Prep	LS	02/26/01	1400	66569

he following Analytical Methods were performed

1ethod Description

> SW846 9045C **ASTM D 2216**

> > P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407

(843) 556-8171 - Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

PO Box 808 Address:

Mailstop L-232

Livermore, CA 94551

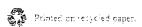
Contact:

Debbie Montero

Project: **CES**

Report Date: March 20, 2001

Page 7 of 8


Project:

LLNL00399 LLNL001 Client Sample ID: Sample ID: 57566 38226001 Client ID:

Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
	SW846 9023									
	SW846 7471A									
	SW846 3050B/6010B									
	SW846 3050B/6010B									
	SW846 3050B/6010B									
	SW846 3050B/6010B									
	DOE EML HASL 300									
0	DOE EML HASL 300									
1	DOE EML HASL 300									
2	DOE EML HASL 300									
3	DOE EML HASL 300									
4	EPA 900.0									
5	EPA 906.0									
6	SW846 7.3.3									
7	SW846 8270C									
8	SW846 8082									
9	SW846 8082									
0	SW846 8082									
1	SW846 8082									
2	SM 2540G									
3	SW846 7.3.4 Modified									
4	SW846 8260B									
5	SW846 8260B									
5	SW846 9095									

Surrogate recovery	Test	Recovery %	Acceptable Limits	
4,6-Tribromophenol	TCLP BNA SOLID 8270C 3510C	81%	(33%-121%)	
Fluorobiphenyl	TCLP BNA SOLID 8270C 3510C	79%	(39%-109%)	
Fluorophenol	TCLP BNA SOLID 8270C 3510C	47%	(16%-83%)	
itrobenzene-d5	TCLP BNA SOLID 8270C 3510C	78%	(34%-111%)	
henol-d5	TCLP BNA SOLID 8270C 3510C	28%	(14%-65%)	
Terphenyl-d14	TCLP BNA SOLID 8270C 3510C	98%	(29%-132%)	
:mx	8082/3550B PCB soil-Fed	5% *	(41%-132%)	
ecachlorobiphenyl	8082/3550B PCB soil-Fed	71%	(44%-127%)	
romofluorobenzene	GEL 8260B Method List Soil Fed	119%	(61%-146%)	
ibromofluoromethane	GEL 8260B Method List Soil Fed	87%	(54%-144%)	

POBox 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address:

PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact:

Debbic Montero

Report Date: March 20, 2001

Page 8

of

Project:

CES

Client Sample ID:

57566 38226001 Project:

LLNL00399

LLNL001

Parameter

Qualifier

Sample ID:

DL

Client ID:

Units

oluene-d8

Result

DF

Time Batch Method AnalystDate

GEL 8260B Method List Soil Fed

99%

RL

(61% - 131%)

Notes:

The Qualifiers in this report are defined as follows:

Indicates the analyte is a surrogate compound.

Actual result is less than amount reported

Actual result is greater than amount reported

Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.

Indicates the compound was analyzed for but not detected above the detection limit

The above sample is reported on an "as received" basis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, Inc. tandard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones at 843-556-8171 Ext. 4243.

57567

COC Sample ID Listing

CES COC # 9766

CES Sample ID	Client Sample ID
57566	W208027RP
57567	W202975
57568	W208027
57569	TB021701CC
	· · · · · · · · · · · · · · · · · · ·
	

CES ANALYSIS REPORT

Lawrence Livermore National Laboratory C&MS Environmental Services

Rad Screening

CES Sample ID: **57567**

Client Sample ID: W202975

Result	MDC	Units	Date Counted	Analyst
Not Detectable	3000	dpm/g	02-20-01	cox

MDC: Minimum Detectable Concentration

CES Procedure: SOP-CES-P541

ELAP Certification 1554

Please Note:

Rad Screening is a tool used in the CES analytical laboratory which allows for the identification of possible radioactive samples. This, in turn, helps the technical staff reduce the possibility of cross contamination through the early segregation of samples and glassware. It also identifies samples with high activity, which may require special handling or exceed building limits.

The result is not meant to be an absolute unbiased measurement since a complex sample matrix can cause significant interference (such as chemiluminescence).

20-Feb-2001 15:27:11 Rpt: rad_screen_rpt

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

PO Box 808 Address:

Mailstop L-232

Livermore, CA 94551

Client Sample ID:

Contact:

Debbie Montero

Collector:

Project:

CES

57567

Sample ID: Matrix: Collect Date: Receive Date: 38223002 Misc Solid 17-FEB-01

23-FEB-01 Client

Report Date: March 20, 2001

Page 1 of

LLNL00399 Project: Client ID: LLNL001

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	stDate	Time	Batch	Metbod
Mercury Analysis Federal											
TCLP Hg in Solid											
Mercury	υ	-0.00079	0.00073	0.200	mg∕L	1	AW2	03/02/01	1137	67214	1
Aetals Analysis-ICP Federal	}										
TCLP ICP Metals for Solid											
Arsenic	}	0.0797	0.0333	5.00	mg/L	10	JAB	03/03/01	2022	67348	2
Barium	J	0.491	0.00101	100	mg/L	10					
Cadmium	U	0.000539	0.00319	1.00	mg/L	10					
Chromium	U	0.00451	0.00691	5.00	mg/L	10					
Lead	3	0.0231	0.0172	5.00	mg/L	10					
Selenium	U	0.0222	0.0492	1.00	mg/L	10					
Sil	U	0.000111	0.00448	5.00	mg/L	10					

he following Prep Methods were performed

ethod	Description	Analyst	Date	Time	Prep Batch
V846 1311	SW846 1311 TCLP Leaching -FEDERAL	JL.	02/27/01	1615	66726
/846 3010A	ICP-TRACE TCLP by SW846 3010A	KLDI	03/02/01	1500	67027
/846 7470A	EPA 7470 Mercury Prep TCLP Liquid Federa	ARD	03/01/01	1830	67031

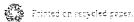
ie following Analytical Methods were performed

thod	Description
	SW846 7470A
	SW846 3010/6010B

tes:

he Qualifiers in this report are defined as follows:

Indicates the analyte is a surrogate compound.


Actual result is less than amount reported

Actual result is greater than amount reported

Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit. Indicates the compound was analyzed for but not detected above the detection limit

e above sample is reported on an "as received" basis.

POBox 30712 · Charleston, SC 29417 · 2040 Savage Road · 29407 (843) 556-8171 • Fax (843) 766-1178

Meeting todow's needs with a liston for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

PO Box 808 Address:

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

CES

Report Date: March 20, 2001

Page 2 of 2

Client Sample ID:

57567 38223002

Project:

LLNL00399

Sample ID:

Client ID:

LLNL001

Parameter Qualifier Result DL RL Units AnalystDate Time Batch Method

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, Inc. standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones at 843-556-8171 Ext. 4243.

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

PO Box 808 Address:

Mailstop L-232

Livermore, CA 94551 Debbie Montero

Contact: Project:

Report Date: March 20, 2001

Page 1 of 2

Client Sample ID: Sample ID:

57567 38225002

Misc Solid 17-FEB-01

23-FEB-01 Client

LLNL00399 Project: Client ID: LLNL001

Matrix:	
Collect Date:	
Receive Date:	
Collector:	

Parameter	Qualifier	Result	DL	RL	Units	DF	Anal	ystDate	Time	Batch	Method
lercury Analysis Federal											
STLC Hg in Solid											
Mercury	U	-0.003	0.00146	0.004	mg/L	1	AW2	03/02/01	1224	67215	1
etals Analysis-ICP Federa	ì				_						
STLC ICP Metals for Solids											
Antimony	υ	-0.000044	0.0269	1.00	mg/L	10	JAB	03/08/01	1532	67052	2
Arsenic		0.355	0.0333	0.100	mg/L	10					
Barium		1.32	0.00101	0.050	mg/L	10					
Beryllium	J	0.0112	0.00155	0.050	mg/L	10					
Cadmium	U	0.00152	0.00319	0.050	mg/L	10					
Chromium	j	0.0149	0.00691	0.050	mg/L	10					
Cot	j	0.0141	0.00632	0.050	mg/L	10					
Cop,	J	0.020	0.00774	0.050	mg/L	10					
Vickel		0.074	0.0186	0.050	mg/L	10					
otassium		31.2	0.115	1.00	mg/L	10					
Selenium	J	0.0496	0.0492	0.100	mg/L	10					
Silver	J	0.0233	0.00448	0.050	mg/L	10					
Thallium	U	-0.0105	0.0446	0.200	mg/L	10					
/anadium	J	0.0423	0.00702	0.050	mg/L	10					
inc	j	0.0175	0.0169	0.050	mg/L	10					
101ybdenum	U	-0.489	0.448	5.00	mg/L	500	RMJ	03/09/01	1558	67052	3
ead	U	-0.142	0.0861	0.250	mg/L	50	MNC	03/08/01	1709	67052	4


: [following	Prep	Methods	were	perfort	ned
•	- 1			_		

hod	Description	Analyst	Date	Time	Prep Batch
ornia Code ol	California Wet Method STLC Leaching	几	02/25/01	1235	66475
46 3010A	ICP-TRACE TCLP by SW846 3010A	KLD1	02/28/01	1500	66976
46 7470A	EPA 7470 Mercury Prep TCLP Liquid Federa	ARD	03/01/01	1830	66977

following Analytical Methods were performed

Description tod

SW846 7470A SW846 3010/6010B SW846 3010/6010B SW846 3010/6010B

Meeting todox's needs with a vision for tomorrow.

Certificate of Analysis

Company:

Lawrence Livermore Nat'l Lab (

Address:

PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Report Date: March 20, 2001

Project:

CES

57567

Project:

LLNL00399

Client Sample ID: Sample ID:

38225002

Client ID:

LLNL001

Parameter

Oualifier

Result

DL

RL

Units

DF

AnalystDate

Time Batch Method

Notes:

The Qualifiers in this report are defined as follows:

- Indicates the analyte is a surrogate compound.
- Actual result is less than amount reported
- Actual result is greater than amount reported
- Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- Indicates the compound was analyzed for but not detected above the detection limit

The above sample is reported on an "as received" basis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, Inc. standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones at 843-556-8171 Ext. 4243.

POBox 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 ° Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address:

PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

CES

57567 38226002 Misc Solid

23-FEB-01 Client

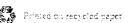
Report Date: March 20, 2001

Page 1 of 8

Client Sample ID: Sample ID: Matrix: Collect Date:

Receive Date:

Collector:


17-FEB-01

LLNL00399 LLNL001 Client ID:

Project:

Parameter	Qualifier	Resu	lt	DL	RL	Units	DF	Anal	ystDate	Time	Batch	Method
lectrode Analysis Federa												
SW9045C Corrosivity(pH	<2or>14)											
Corrosivity	ŕ	9.51		0.010	0.100	SU	1	VHI	02/24/01	1345	66453	I
Fravimetric Solids												
ASTM D 2216 % Moisture	: Federal											
Moisture		4.52				percent		COBI	02/26/01	1714	66601	2
lalogen Analysis Federal												
SW9023 TOX (Extract. H	(aloven)											
Extractable Organic	,	20500		179	750	mg/kg	50	LS	03/01/01	1655	66816	3
Halogens		20000		• • •			50	250				
lerc Analysis Federal												
74. Id Vapor Hg in Sc	olid											
Mercury	U	-0.0763		0.0425	0.100	mg/kg	10	AW2	02/28/01	1522	66867	4
1etals Analysis-ICP Feder		0.0705		0.0125	0.100	**********	70	2	02/20/01	1022	0000,	
6010 TAL Metals Soil Fed												
Antimony	U U	-0.117		0.456	5.00	mg/kg	2	HSC	03/07/01	0018	66844	5
Arsenic	Ü	5.91		0.263	5.00	mg/kg	2	1100	03/0//01	0010	00011	J
Barium		46.7		0.0285	1.00	mg/kg	2					
Beryllium		2.08		0.0147	0.481	mg/kg	2					
Cadmium	U	-0.218		0.0249	1.00	mg/kg	2					
Chromium	J	2.98		0.419	3.00	mg/kg	2					
Cobalt	J	4.12		0.105	5.00	mg/kg	2					
Copper		5.00		0.0483	5.00	mg/kg	2					
Lead	J	0.617		0.327	5.00	mg/kg	2					
Molybdenum		21.1		0.122	3.00	mg/kg	2					
Nickel	_	21.1		0.191	3.00	mg/kg	2					
Potassium	J	17.4		1.66	50.0	mg/kg	2					
Selenium	U	-0.423		0.260	1.00	mg/kg	2					
Silver	U U	0.0541		0.111	2.00 5.00	mg/kg	2					
Thallium Vanadium	U	0.710 6.41		0.908 0.114	5.00	mg/kg mg/kg	2 2					
Zinc	J	1.24		0.114	5.00	mg/kg		HSC	03/09/01	0410	68154	8
ad Alpha Spec	,	1.24		0.236	3.00	III E/KE	2	1150	03/07/01	0410	00154	U
• •	1: 1											
Alphaspec Am241, Cm, so		0.00445		0.000	1.00	-C:I-		нг	02/05/01	1122	CC040	0
Americium-241	U	-0.00445	+/-0.00893	0.098	1.00	pCi/g		JLE	03/05/01	1133	66949	9
Curium-242 Curium-243/244	U U	0.00 0.0141	+/-2.00 +/-0.0383	0.0597 0.0981	1.00 1.00	pCi/g						
Curium-243/244 Curium-245/246	U	0.0141	+/-0.0383 +/-0.0751	0.0981	1.00	pCi/g						
Curdin-243/240		0.0040	+/-0.0/31	0.0046	1.00	pCi/g						

POBox 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 ° Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address: PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

CES

Report Date: March 20, 2001

Page 2 of 8

Client Sample ID: Sample ID:

57567 38226002

Project: Client ID: LLNL00399 LLNL001

Parameter	Qualifier	Result	1	DL	RL	Units	DF	Analy	stDate	Time	Batch	Method
lad Alpha Spec					· · · · · · · · · · · · · · · · · · ·							
Alphaspec Pu, solid												
Plutonium-238	U	0.00	+/-2.00	0.0515	0.100	pCi/g		ЛE	03/03/01	1238	66950	10
Plutonium-239/240		0.0269	+/-0.0205	0.0115	0.100	pCi/g						
Alphaspec Th, solid												
Thorium-228		0.263	+/-0.100	0.0997	1.00	pCi/g		ЛE	03/06/01	1823	66952	11
Thorium-230		0.927	+/-0.200	0.0939	1.00	pCi/g		JEL	03/00/01	1025	00752	• • •
Thorium-232		0.354	+/-0.106	0.019	1.00	pCi/g						
		0.554	47-0.100	0.017	1.00	PCDE						
Alphaspec U, solid						0						
Uranium-233/234		0.837	+/-0.285	0.144	1.00	pCi/g		HOTI	03/05/01	1123	66956	12
Uranium-235/236	U	0.0475	+/-0.0745	0.145	1.00	p Ci/g						
Uranium-238		0.748	+/-0.265	0.0623	1.00	pCi/g						
lad Gamma Spec												
Garmaspec, Gamma, solid												
A m-228		0.261	+/-0.121	0.0824	0.500	pCi/g		CRB	03/05/01	2319	67061	13
Aniericium-241	U	-0.0306	+/-0.0837	0.128	0.200	pCi/g						
Antimony-124	U	-0.0428	+/-0.0203	0.0307	0.050	pCi/g						
Antimony-125	U	0.0257	+/-0.030	0.0674	0.100	pCi/g						
Barium-133	U	-0.00638	+/-0.0222	0.0308	0.050	pCi∕g						
Barium-140	U	-0.00632	+/-0.127	0.201	0.200	p Ci/g						
Beryllium-7	U	0.0848	+/-0.147	0.239	0.500	pCi/g						
Bismuth-212	U	0.134	+/-0.213	0.183	0.500	pCi/g						
Bismuth-214		0.604	+/-0.105	0.0526	0.100	pCi∕g						
Cerium-139	υ	-0.00634	+/-0.0141	0.0227	0.050	pCi/g						
Cerium-141	υ	-0.0162	+/-0.0329	0.0492	0.050	pCi/g						
Cerium-144	υ	-0.0412	+/-0.102	0.153	0.500	pCi/g						
Cesium-134	υ	0.000677	+/-0.0182	0.0264	0.050	pCi/g						
Cesium-136	υ	-0.0491	+/-0.0515	0.0796	1000	pCi/g						
Cesium-137	υ	-0.00604	+/-0.0182	0.0259	0.050	pCi/g						
Chromium-51	U	0.160	+/-0.291	0.288	0.500	pCi/g						
Cobalt-56	U	-0.000615	+/-0.0177	0.0293	0.050	pCi/g						
Cobalt-57	U	0.0059	+/-0.0126	0.0195	0.050	pCi/g						
Cobalt-58	U	-0.0063	+/-0.0168	0.0273	0.050	pCi/g						
Cobalt-60	U	0.0112	+/-0.0169	0.030	0.050	pCi/g						
Europium-152	υ	-0.0364	+/-0.0443	0.0691	0.100	pCi/g						
Europium-154	U	0.0346	+/-0.0458	0.0816	0.500	pCi/g						
Europium-155	U	0.0435	+/-0.0746	0.0831	0.500	pCi/g						
Iridium-192	U	-0.00647	+/-0.0187	0.026	0.100	pCi/g						
Iron-59	Ü	-0.00155	+/-0.0361	0.0594	0.100	pCi/g						
Lead-210		7.92	+/-4.33	3.94	5.00	pCi/g						
Lead-212		0.238	+/-0.0657	0.0409	0.100	pCi/g						
Lead-214		0.821	+/-0.118	0.0488	0.100	pCi/g						
Manganese-54	U	0.000827	+/-0.0161	0.0267	0.100	pCi/g						

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address: PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

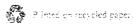
Project:

CES

Report Date: March 20, 2001

Page 3 of

Client Sample ID: Sample ID:


57567 38226002

Project: Client ID: LLNL00399 LLNL001

Parameter	Qualifier	Result		DL	RL	Units	DF	Analy	stDate	Time	Batch	Method
lad Gamma Spec	*	=				•				-		
Gammaspec, Gamma, solid												
Mercury-203	υ	0.0187	+/-0.0199	0.0327	0.050	pCi/g						
Neodymium-147	U	-0.131	+/-0.267	0.415	1000	pCi/g						
Neptunium-239	U	0.0814	+/-0.104	0.143	5.00	pCi/g						
Niobium-94	U	0.00675	+/-0.015	0.0254	1.00	pCi/g						
Niobium-95	U	0.00454	+/-0.0339	0.0318	0.050	pCi/g						
Potassium-40		0.548	+/-0.387	0.245	0.500	pCi/g						
Promethium-144	U	0.00839	+/-0.032	0.0265	0.050	pCi/g						
Promethium-146	U	0.0209	+/-0.0201	0.0331	0.050	pCi/g						
Radium-228		0.261	+/-0.121	0.0824	0.500	pCi/g						
Ruthenium-106	U	0.0313	+/-0.138	0.233	0.500	pCi/g						
Silver-110m	U	0.00539	+/-0.0145	0.0246	0.050	pCi/g						
Sodium-22	U	0.0124	+/-0.0164	0.0293	0.050	pCi/g						
Thenrom-208	U	0.00	+/-0.0399	0.041	0.050	pCi/g						
T! n-230		0.604	+/-0.105	0.0526	1.00	pCi/g						
Thomam-234	U	0.00	+/-0.896	1.23	5.00	pCi/g						
Tin-113	U	-0.0128	+/-0.021	0.0329	0.050	pCi/g						
Uranium-235	U	0.00	+/-0.112	0.170	0.500	pCi/g						
Uranium-238	U	0.00	+/-0.896	1.23	1.00	pCi/g						
Yttrium-88	U	0.016	+/-0.0173	0.0317	0.050	pCi/g						
Zinc-65	U	0.0363	+/-0.0396	0.060	0.100	pCi/g						
Zirconium-95	U	0.0122	+/-0.0284	0.0483	0.100	pCi/g						
ad Gas Flow						1 3						
GFPC, Gross A/B, solid												
Alpha		8.01	+/-2.99	3.18	4.00	pCi/g		JEN	03/12/01	1902	66939	14
Beta		11.6	+/-3.34	5.52	10.0	pCi/g		31371	03/12/01	.,02	00737	• •
ad Liquid Scint		11.0	3.3 /	3.32	20.0	Pose						
-												
LSC, Tritium Dist, solid								_				_
Tritium		15.0	+/-1.39	1.48	2.00	pCi/g		CAFI	03/03/01	1304	66518	15
apid Flow Analysis Federal												
SW 7.3.3 Reactivity, Releasab	l											
Reactive Releasable Cyanide		-1.8		13.8	25000	ug/kg	1	ADF	03/01/01	1058	66815	16
mi-Volatiles-GC/MS Federa						-66	_					
TCLP BNA SOLID 8270C 35.												
	ioc	0.00		0.15	50.0	- A		EU 775	02:06:01	2020	(2140	12
1,2-Dichlorobenzene		0.00		8.15	50.0	ug/L	1	JWF	03/05/01	2039	0/149	17
1,4-Dichlorobenzene		0.00		0.00915	0.750	mg/L	. !					
2,3,4,6-Tetrachlorophenol		0.00		5.65	50.0	ug/L	1					
2,4,5-Trichlorophenol		0.00		0.0059	40.0	mg/L	1					
2,4,6-Trichlorophenol		0.00		0.0056	0.200	mg/L	1					
2,4-Dinitrotoluene		0.00		0.00485	0.130	mg/L	1					
Hexachlorobenzene		0.00		0.00535	0.130	mg/L	1					

POBox 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407

(843) 556-8171 · Fax (843) 766-1178

Meeting today a needs with a vision for tomorrow

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address: PO Box 808

Mailstop L-232

Livermore, CA 94551

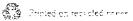
Contact: Project:

Debbie Montero CES

Report Date: March 20, 2001

Page 4 of 8

57567


Client Sample	ID:
Sample ID:	

38226002

Proiect: Client ID: LLNL00399 LLNL001

Parameter	Qualifier	Result	DL	RL	Units	DF	Anal	ystDate	Time	Batch	Method
emi-Volatiles-GC/MS Feder	ral										
TCLP BNA SOLID 8270C 3.	510C										
Hexachlorobutadiene		0.00	0.0088	0.100	mg/L	1					
Hexachloroethane		0.00	0.0085	0.300	mg/L	1					
Methoxychlor		0.00	5.10	50.0	ug/L	1					
Nitrobenzene		0.00	0.0071	0.200	mg/L	1					
Pentachlorophenol		0.00	0.0079	10.0	mg/L	1					
Phenol		0.00	4.20	50.0	ug/l.	ł					
Pyridine		0.00	0.011	0.500	mg/L	ł					
bis(2-Chloroethyl) ether		0.00	7.00	50.0	սջ/L	j					
m.p-Cresols		0.00	0.00535	20.0	mg/L	}					
o-Cresol		0.00	0.0063	20.0	mg/L	j.					
ni-Volatiles-PCB Federal											
782/3550 B PCB soil-Fed											
\ro' 016	U	0.00	0.790	3.33	ug/kg	i	MM	03/02/01	0722	67057	18
Aroc 1221	U	0.00	2.82	3.33	ug/kg	i					
\roclor-1232	U	0.00	0.727	3.33	ug/kg	J					
roclor-1242	U	0.00	1.67	3.33	ug/kg	1					
.roclor-1248	U	0.00	0.907	3.33	ug/kg	}					
roclor-1254		4.00	1.37	3.33	ug/kg)					
roctor-1260	U	0.00	1.43	3.33	ug/kg	1					
ls Analysis Federal											
A 160.3 Mod. Solids, Tot	al										
tal Solids		977000	120	200	mg/kg		TSM	02/26/01	1412	66511	22
trometric Analysis Fede	rai										
846-7.3.4 Sulfide, Reactiv	e										
active Releasable Sulfide	U	-0.01	0.115	50.0	mg/kg	1	AAT	02/26/01	1602	66609	23
ile Organics Federal											
, 8260B Method List Soil	! Fed										
1,2-Tetrachloroethane	U	0.00	16000	40000	ug/kg	20000	CDS1	03/02/01	1344	66921	24
1-Trichloroethane	U	0.00	11600	40000	ug/kg	20000					
2,2-Tetrachloroethane	U	0.00	12000	40000	ug/kg	20000					
2-Trichloroethane	U	0.00	14400	40000	υg∕kg	20000					
Dichloroethane		51100	16400	40000	ug/kg	20000					
Dichloroethylene		1290000	10500	40000	ug/kg	20000					
Dichloropropene	U	0.00	12800	40000	ug/kg	20000					
3-Trichlorobenzene	U	0.00	18800	40000	ug/kg	20000					
-Trichloropropane	U	0.00	12400	40000	ug/kg	20000					
-Trichlorobenzene	U	0.00	16000	40000	ug/kg	20000					
-Trimethylbenzene	U	0.00	16400	40000	ug/kg	20000					
Dibromo-3-	U	0.00	18800	40000	ug/kg	20000					
opropane											

PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 e Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address:

PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Report Date: March 20, 2001

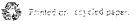
8 Page 5 of

Project:

CES

Project:

LLNL00399


Client Sample ID: Sample ID:

57567 38226002

Client ID: LLNL001

Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
olatile Organics Federal										
GEL 8260B Method List So	oil Fed									
1.2-Dibromoethane	U	0.00	12800	40000	ug/kg	20000				
1,2-Dichlorobenzene	U	0.00	17600	40000	ug/kg	20000				
1,2-Dichloroethane	j	3 3700	10800	40000	ug/kg	20000				
1,2-Dichloropropane	U	0.00	12800	40000	ug/kg	20000				
1,3,5-Trimethylbenzene	U	0.00	16800	40000	ug/kg	20000				
1,3-Dichlorobenzene	υ	0.00	16800	40000	ug/kg	20000				
1,3-Dichloropropane	U	0.00	13200	40000	ug/kg	20000				
1,4-Dichlorobenzene	U	0.00	16000	40000	ug/kg	20000				
2,2-Dichloropropane	U	0.00	12000	40000	ug/kg	20000				
2-Butanone	U	0.00	30400	200000	ug/kg	20000				
2-Chloroethylvinyl ether	U	0.00	37200	200000	ug/kg	20000				
2-Chlorotoluene	U	0.00	16800	40000	ug/kg	20000				
2-Hermone	U	0.00	37600	200000	ug/kg	20000				
I-C oluene	U	0.00	16000	40000	ug/kg	20000				
l-Isop. opyltolnene	U	0.00	16000	40000	ug/kg	20000				
-Methyl-2-pentanone	U	0.00	53600	200000	ug/kg	20000				
Acetone	U	0.00	40000	200000	ug/kg	20000				
Jenzene	U	0.00	15600	40000	ug/kg	20000				
Fromobenzene	υ	. 0.00	16400	40000	ug/kg	20000				
romochloromethane	U	0.00	18400	40000	ug/kg	20000				
romodichloromethane	υ	0.00	14000	40000	ug/kg	20000				
romoform	U	0.00	14400	40000	ug/kg	20000				
romomethane	U	0.00	12400	40000	ug/kg	20000				
arbon disulfide	Ü	0.00	24800	200000	ug/kg	20000				
arbon tetrachloride	Ū	0.00	10400	40000	ug/kg	20000				
hlorobenzene	Ū	0.00	16000	40000	ug/kg	20000				
nloroethane	Ū	0.00	11200	40000	ug/kg	20000				
iloroform		1630000	18800	40000	ug/kg	20000				
iloromethane	U	0.00	14000	40000	ug/kg	20000				
bromochloromethane	Ū	0.00	16400	40000	ug/kg	20000				
bromomethane	Ū	0.00	13600	40000	ug/kg	20000				
chlorodifluoromethane	ΰ	0.00	7200	40000	ug/kg	20000				
ıylbenzene	Ŭ	0.00	14000	40000	ug/kg	20000				
xachlorobutadiene	ΰ	0.00	16400	40000	ug/kg	20000				
propylbenzene	Ü	0.00	14000	40000	ug/kg	20000				
thylene chloride	Ŭ	0.00	17600	200000	ug/kg	20000				
ohthalene	Ū	0.00	11600	40000	ug/kg	20000				
rene	Ŭ	0.00	12800	40000	ug/kg	20000				
rachloroethylene	ΰ	0.00	16000	40000	ug/kg	20000				
uene	Ü	0.00	20000	40000	ug/kg	20000				
:hloroethylene	U	54400	28800	40000	ug/kg	20000				
hlorofluoromethane	U	0.00	14800	40000	ug/kg ug/kg	20000				
moromoromethane	U	0.00	14000	40000	ug/Kg	20000				

POBox 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 · Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address:

PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

CES

Report Date: March 20, 2001

Page 6 of 8

Client Sample ID: Sample ID:

57567

38226002

Project: Client ID: LLNL00399

LLNL001

Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
olatile Organics Federal										
GEL 8260B Method List Soi	l Fed									
Trichlorotrifluoroethane	U	0.00	180000	200000	ug/kg	20000				
Vinyl acetate	U	0.00	30800	200000	ug/kg	20000				
Vinyl chloride	U	0.00	12000	40000	ug/kg	20000				
cis-1,2-Dichloroethylene	U	0.00	16400	40000	ug/kg	20000				
cis-1,3-Dichloropropylene	U	0.00	11200	40000	ug/kg	20000				
m,p-Xylenes	U	0.00	28000	80000	ug/kg	20000				
n-Butylbenzene	U	0.00	16400	40000	ug∕kg	20000				
n-Propylbenzene	U	0.00	14000	40000	ug/kg	20000				
o-Xylene	U	0.00	14400	40000	ug/kg	20000				
sec-Butylbenzene	U	0.00	17600	40000	ug/kg	20000				
tert-Butylbenzene	U	0.00	12000	40000	ug/kg	20000				
trans-1,2-Dichloroethylene	U	0.00	14800	40000	ug/kg	20000				
tre 1.3-	U	0.00	9600	40000	ug/kg	20000				
D opropylene										
Vet Cnemistry General Fed	eral									

SW9095 Paint Filter Test Feder

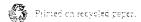
Paint Filter

PASS

AAT 03/01/01 1609 67131 25

The following Prep Methods were performed

lhod	Description	Analyst	Date	Time	Prep Batch
Soil Prep	Ash Soil Prep EPI A-021,A-021B,A-026	CCM1	02/28/01	1026	66623
Soil Prep	Dry Soil Prep EP1 A-021, A-021B, A-026	WEO	02/26/01	0842	66493
6 1311	SW846 1311 TCLP Leaching	几	02/27/01	1615	66727
6 3050B	846 3050BS PREP	HSC	03/08/01	1400	68021
5 3050B	846 3050BS PREP	KLDI	02/27/01	1300	66677
3510C	3510C BNA TCLP Prep-8270C Analysis Fed	AEJ	03/01/01	0800	67016
5 3550B	3550B PCB Prep Soil FED	RDH	02/28/01	2140	66920
3550B	3550B PCB Prep Soil FED	RDH	03/02/01	1919	67197
7.3.3 Pr	SW 7.3.3 Reactivity, Releasable Cyanide-	TEMP	02/26/01	1717	66523
7.3.4 Mo	d SW846-7.3.4 Sulfide, Reactive-Releasabl	AAT	02/26/01	1403	66608
6 7471A	EPA 7471 Mercury Prep Soil	ARD	02/27/01	1800	66624
6 9023 Pr	SW 9023 Halogen, Extractable(TOX) Prep	LS	02/26/01	1400	66569


The following Analytical Methods were performed

Vlethod Description

SW846 9045C

ASTM D 2216

PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 e Fax (843) 766-1178

Meeting today's Leeds with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

PO Box 808 Address:

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

CES

Report Date: March 20, 2001

Page 7 of 8

Client Sample ID:

Project: Client ID: LLNL00399 LLNL001

Sample ID:

57567 38226002

Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
1	SW846 9023									
	SW846 7471A									
•	SW846 3050B/6010B									
•	SW846 3050B/6010B									
•	SW846 3050B/6010B									
:	SW846 3050B/6010B									
•	DOE EML HASL 300									
0	DOE EMIL HASL 300									
1	DOE EML HASL 300									
2	DOE EML HASL 300									
3	DOE EML HASL 300									
4	EPA 900.0									
5	EPA 906.0									
6	SW846 7.3.3									
7	SW846 8270C									
8	SW846 8082									
9	SW846 8082									
0	SW846 8082									
1	SW846 8082									
2	SM 2540G									
3	SW846 7.3.4 Modified									
4	SW846 8260B									
5	SW846 9095									

Surrogate recovery	Test	Recovery %	Acceptable Limits	
,4,6-Tribromophenol	TCLP BNA SOLID 8270C 3510C	83%	(33%-121%)	
-Fluorobiphenyl	TCLP BNA SOLID 8270C 3510C	85%	(39%-109%)	
-Fluorophenol	TCLP BNA SOLID 8270C 3510C	48%	(16%-83%)	
litrobenzene-d5	TCLP BNA SOLID 8270C 3510C	81%	(34%-111%)	
henol-d5	TCLP BNA SOLID 8270C 3510C	29%	(14%-65%)	
-Terphenyl-d14	TCLP BNA SOLID 8270C 3510C	98%	(29%-132%)	
cmx	8082/3550B PCB soil-Fed	4%*	(41%-132%)	
ecachlorobiphenyl	8082/3550B PCB soil-Fed	57%	(44%-127%)	
romofluorobenzene	GEL 8260B Method List Soil Fed	105%	(61%-146%)	
ibromofluoromethane	GEL 8260B Method List Soil Fed	86%	(54%-144%)	
oluene-d8	GEL 8260B Method List Soil Fed	100%	(61%-131%)	

Meeting today's weeds with a vision for temorrow

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address: PO Box 808 Mailstop L-232

Mailstop L-232 Livermore, CA 94551

Contact: Debbie Montero

Project: CES

Report Date: March 20, 2001

Page 7 of 8

Client Sample ID: Sample ID: 57567 38226002 Proiect: LLNL00399 Client ID: LLNL001

Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
3	SW846 9023									
4	SW846 7471A									
5	SW846 3050B/6010B									
6	SW846 3050B/6010B									
7	SW846 3050B/6010B									
8	SW846 3050B/6010B									
9	DOE EML HASL 300									
10	DOE EML HASL 300									
11	DOE EML HASL 300									
12	DOE EML HASL 300									
13	DOE EML HASL 300									
14	EPA 900.0									
15	EPA 906.0									
16	SW846 7.3.3									
17	SW846 8270C									
18	SW846 8082									
19	SW846 8082									
30	SW846 8082									
21	SW846 8082									
!2	SM 2540G									
!3	SW846 7.3.4 Modified									
:4	SW846 8260B									
.5	SW846 9095									

Surrogate recovery	Test	Recovery %	Acceptable Limits	
,4,6-Tribromophenol	TCLP BNA SOLID 8270C 3510C	83%	(33%-121%)	
Fluorobiphenyl	TCLP BNA SOLID 8270C 3510C	85%	(39%-109%)	
-Fluorophenol	TCLP BNA SOLID 8270C 3510C	48%	(16%-83%)	
itrobenzene-d5	TCLP BNA SOLID 8270C 3510C	81%	(34%-111%)	
henol-d5	TCLP BNA SOLID 8270C 3510C	29%	(14%-65%)	
Terphenyl-d14	TCLP BNA SOLID 8270C 3510C	98%	(29%-132%)	
:mx	8082/3550B PCB soil-Fed	4% *	(41%-132%)	
ecachlorobiphenyl	8082/3550B PCB soil-Fed	57%	(44%-127%)	
romofluorobenzene	GEL 8260B Method List Soil Fed	105%	(61%-146%)	
ibromofluoromethane	GEL 8260B Method List Soil Fed	86%	(54%-144%)	
oluene-d8	GEL 8260B Method List Soil Fed	100%	(61%-131%)	

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address:

PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Sample ID:

Project: CES

Report Date: March 20, 2001

Page 8 of 8

Client Sample ID:

57567

38226002

Project: Client ID: LLNL00399 LLNL001

Parameter

Qualifier

Result

DL

RL

Units

DF AnalystDate Time Batch Method

Votes:

The Qualifiers in this report are defined as follows:

Indicates the analyte is a surrogate compound.

Actual result is less than amount reported

Actual result is greater than amount reported

Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.

Indicates the compound was analyzed for but not detected above the detection limit

The above sample is reported on an "as received" basis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, Inc. standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones at 843-556-8171 Ext. 4243.

eviewed by

PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

57568

COC Sample ID Listing

CES COC # 9766

CES Sample ID	Client Sample ID
57566	W208027RP
57567	W202975
57568	W208027
57569	TB021701CC
-	17 17 17 17 17 17 17 17 17 17 17 17 17 1
	-
	· · · · · · · · · · · · · · · · · · ·
	_
-	
_	
	·
	
•	
-	
	·

CES ANALYSIS REPORT

Lawrence Livermore National Laboratory C&MS Environmental Services

Rad Screening

CES Sample ID: **57568**

Client Sample ID: W208027

Result	MDC	Units	Date Counted	Analyst
Not Detectable	3000	dpm/g	02-20-01	сох

MDC: Minimum Detectable Concentration

CES Procedure: SOP-CES-P541

ELAP Certification 1554

Please Note:

Rad Screening is a tool used in the CES analytical laboratory which allows for the identification of possible radioactive samples. This, in turn, helps the technical staff reduce the possibility of cross contamination through the early segregation of samples and glassware. It also identifies samples with high activity, which may require special handling or exceed building limits.

The result is not meant to be an absolute unbiased measurement since a complex sample matrix can cause significant interference (such as chemiluminescence).

5756**8**

COC Sample ID Listing

CES COC # 9766

CES Sample ID	Client Sample ID
57566	W208027RP
57567	W202975
57568	W208027
57569	TB021701CC
-	
-	
,	i i i i i i i i i i i i i i i i i i i
1	
•	
	·
<u></u>	

Meeting today's needs with a vision for tamomo

Certificate of Analysis

Company:

Lawrence Livermore Nat'l Lab (

Address:

PO Box 808

Mailstop L-232

Livermore, CA 94551 Debbie Montero

Contact: Project:

CES

Report Date: March 20, 2001

Page 1 of 2

Client Sample ID:

Sample ID:

57568 38223003 Misc Solid

Project: Client ID: LLNL00399 LLNL001

Matrix: Collect Date: Receive Date: Collector:

17-FEB-01 23-FEB-01 Client

Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
1ercury Analysis Federal										
TCLP Hg in Solid										
Mercury	U	-0.000994	0.00073	0.200	mg/L	1	AW2 03/02/0	11139	67214	I
Ietals Analysis-ICP Federal)									
TCLP ICP Metals for Solid										
Arsenic	J	0.0615	0.0333	5.00	mg/L	10	JAB 03/03/0	1 2027	67348	2
Barium	J	0.489	0.00101	100	mg/L	10				
Cadmium	U	-0.000014	0.00319	1.00	mg/L	10				
Chromium	U	0.00172	0.00691	5.00	mg/L	10				
Lead	U	0.0134	0.0172	5.00	mg/L	10				
Selenium	U	0.00574	0.0492	1.00	mg/L	10				
Silver	U	0.00263	0 00448	5.00	mg/L	10				

he following Prep Methods were performed

ethod	Description	Analyst	Date	Time	Prep Batch
√846 1311	SW846 1311 TCLP Leaching -FEDERAL	JL	02/27/01	1615	66726
7846 3010A	ICP-TRACE TCLP by SW846 3010A	KLD1	03/02/01	1500	67027
′846 7470A	EPA 7470 Mercury Prep TCLP Liquid Federa	ARD	03/01/01	1830	67031

ie following Analytical Methods were performed

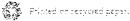
Description thod

SW846 7470A

SW846 3010/6010B

tes:

he Qualifiers in this report are defined as follows:


Indicates the analyte is a surrogate compound.

Actual result is less than amount reported

Actual result is greater than amount reported

Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit. Indicates the compound was analyzed for but not detected above the detection limit

e above sample is reported on an "as received" basis.

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Lawrence Livermore Nat'l Lab (

Address:

PO Box 808 Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

CES

Report Date: March 20, 2001

2

2 of

Client Sample ID: Sample ID:

57568 38223003 Project:

LLNL00399

Client ID:

LLNL001

Parameter

Qualifier

Result

ÐL

RL

Units

DF

AnalystDate

Time Batch Method

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, Inc. standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones at 843-556-8171 Ext. 4243.

Reviewed by

POBox 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 · Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address:

PO Box 808 Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

CES

Report Date: March 20, 2001

1 of 2

Client Sample ID:

Sample ID: Matrix:

57568 38225003 Misc Solid 17-FEB-01 Project: Client ID:

LLNL00399 LLNL001

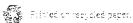
Collect Date: Receive Date: Collector:

23-FEB-01 Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	stDate	Time	Batch	Metbod
1ercury Analysis Federal						·					_
STLC Hg in Solid											
Mercury	U	-0.00384	0.00146	0.004	mg/L	1	AW2	03/02/01	1226	67215	1
Ietals Analysis-ICP Feder	al										
STLC ICP Metals for Solid	ls										
Antimony	J	0.0396	0.0269	1.00	mg/L	10	JAB	03/08/01	1539	67052	2
Arsenic		0.323	0.0333	0.100	mg/L	10					
Barium		1.26	0.00101	0.050	mg/L	10					
Beryllium	j	0.015	0.00155	0.050	mg/L	10					
Cadmium	U	-0.000218	0.00319	0.050	mg/L	10					
Chromium	J	0.013	0.00691	0.050	mg/L	10					
Cobali	J	0.00998	0.00632	0.050	mg/L	10					
\mathbf{C}_{ℓ}	U	0.00639	0.00774	0.050	mg/L	10					
Nic		0.0656	0.0186	0.050	mg/L	10					
Potassium		30.4	0.115	1.00	mg/L	10					
Selenium	U	0.0271	0.0492	0.100	mg/L	10					
Silver	J	0.0184	0.00448	0.050	mg/L	10					
Thallium	U	0.0334	0.0446	0.200	mg/L	10					
Vanadium	J	0.0141	0.00702	0.050	mg/L	10					
Zinc	U	0.0152	0.0169	0.050	mg/L	10					
Molybdenum	U	-1.17	0.224	2.50	mg/L	250	HSC	03/08/01	2218	67052	3
Lead	U	-0.0979	0.0861	0.250	mg/L	50	MNC	03/08/01	1722	67052	4

he following Prep Methods were performed

1ethod	Description	Analyst	Date	Time	Prep Batch
alifornia Code o	Ol California Wet Method STLC Leaching	几	02/25/01	1235	66475
¥846 3010A	ICP-TRACE TCLP by SW846 3010A	KLDI	02/28/01	1500	66976
N846 7470A	EPA 7470 Mercury Prep TCLP Liquid Federa	ARD	03/01/01	1830	66977


he following Analytical Methods were performed

lethod Description

> SW846 7470A SW846 3010/6010B SW846 3010/6010B SW846 3010/6010B

> > PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407

(843) 556-8171 · Fax (843) 766-1178

Meeting today is needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address:

PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

DF

Report Date: March 20, 2001

Page 2 2 of

57568

Project:

LLNL'00399

Parameter

Client Sample ID: Sample ID:

Qualifier

38225003

DL

RL

Client ID:

Units

LLNL001

AnalystDate Time Batch Method

Notes:

The Qualifiers in this report are defined as follows:

- Indicates the analyte is a surrogate compound.
- Actual result is less than amount reported
- Actual result is greater than amount reported
- Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit. J
- Indicates the compound was analyzed for but not detected above the detection limit

Result

The above sample is reported on an "as received" basis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, Inc. standard operating procedures. Please direct any questions to your Project Manager, Cheryl Jones at 843-556-8171 Ext. 4243.

Re

ed by

PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

Printed on recycled paper.

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address: PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact: Debbie Montero

Project: CES

Report Date: March 20, 2001

Page 1 of 8

Client Sample ID: Sample ID: Matrix: 57568 38226003 Misc Solid Project: LLNL00399 Client ID: LLNL001

Matrix:
Collect Date:
Receive Date:
Collector:

17-FEB-01 23-FEB-01 Client

Parameter	Qualifier	Result		DL	RL	Units	DF	Analy	ystDate	Time	Batch	Method
Electrode Analysis Federal					· 							
SW9045C Corrosivity(pH<	:2or>14)											
Corrosivity		9.82		0.010	0.100	SU	1	VHI	02/24/01	1345	66453]
Gravimetric Solids												
ASTM D 2216 % Moisture	Federal											
Moisture		1.45				percent		COBI	02/26/01	1714	66601	2
lalogen Analysis Federal												
SW9023 TOX (Extract. Ha	logen)											
Extractable Organic	0 ,	19100		179	750	mg∕k g	50	LS	03/01/01	1707	66816	3
Halogens						. .						
lercury Analysis Federal												
74" old Vapor Hg in Sol	lid											
N ₁ sy	υ	-0.0765		0.0419	0.100	mg/kg	10	AW2	02/28/01	1524	66867	4
letals Analysis-ICP Federa	ai											
6010 TAL Metals Soil Fede	ral											
Antimony	j	0.466		0.447	5.00	mg/kg	2	HSC	03/07/01	0023	66844	5
Barium		60.4		0.028	1.00	mg/kg	2					
Beryllium		4.88		0.0145	0.472	mg/kg	2					
Cadmium	U	-0.0282		0.0245	1.00	mg/kg	2					
Chromium		3.35		0.411	3.00	mg/kg	2					
Cobalt	_	5.76		0.103	5.00	mg∕kg	2					
Copper	J	3.88		0.0474	5.00	mg/kg	2					
Lead	J	1.96		0.321	5.00	mg/kg	2					
Molybdenum	J	0.767		0.119	3.00	mg/kg	2					
Nickel		26.2		0.188	3.00	mg/kg	2					
Potassium	J	35.6		1.63	50.0	mg/kg	2					
Selenium	J	0.408		0.255	1.00	mg/kg	2					
Silver	U	0.0625		0.109	2.00	mg/kg	2					
Thallium	Ú	0.0541		0.891	5.00	mg/kg	2					
Vanadium	J	4.61		0.112	5.00	mg/kg	2	TA D	02/07/01	1222	CC011	,
Arsenic) }	4.41		0.258 0.241	5.00 5.00	mg∕kg	2 2	JAB HSC	03/07/01		66844	6 8
Zinc	J	2.37		0.241	3.00	mg/kg	2	nsc	03/09/01	0410	00134	0
id Alpha Spec												
Alphaspec Am241, Cm, soli												
Americium-241	U	0.0185	+/-0.0752	0.221	1.00	pCi/g		ЛЕ	03/05/01	1133	66949	9
Curium-242	υ	0.029	+/-0.0786	0.201	1.00	pCi/g						
Curium-243/244	U	0.0271	+/-0.0734	0.188	1.00	pCi/g						
Curium-245/246	U	0.0413	+/-0.0829	0.124	1.00	pCi/g						

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

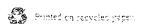
Address: PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact: Debbie Montero

Project: CES


Report Date: March 20, 2001

Page 2 of 8

Client Sample ID: Sample ID: 57568 38226003 Project: Client ID: LLNL00399 LLNL001

Parameter	Qualifier	Resu	lt	DL	RL	Units	DF	Analy	ystDate	Time	Batch	Method
Rad Alpha Spec							,					
Alphaspec Pu, solid												
Plutonium-238	U	0.00668	+/-0.0134	0.0256	0.100	pCi/g		ЛE	03/03/01	1238	66950	10
Plutonium-239/240	U	0.010	+/-0.015	0.0255	0.100	pCi/g						
Alphaspec Th, solid												
Thorium-228		0.348	+/-0.182	0.252	1.00	pCi/g		ЛE	03/06/01	1805	66952	11
Thorium-230		1.05	+/-0.285	0.115	1.00	pCi/g						
Thorium-232		0.347	+/-0.143	0.0757	1.00	pCi/g						
Alphaspec U, solid												
Uranium-233/234		0.650	+/-0.269	0.269	1.00	pCi/g		ноті	03/05/01	1123	66956	12
Uranium-235/236	υ	0.0122	+/-0.0668	0.187	1.00	pCi/g		11011	03/03/01	1123	00/30	12
Uranium-238	O	1.01	+/-0.322	0.135	1.00	pCi/g						
ad Gamma Spec		1.01	., 0.922	0.133	7.00	Pose						
Gammaspec, Gamma, solid												
Ac n-228	U	0 00	+/-0.114	0.142	0.500	pCi/g		CRB	03/05/01	2319	67061	13
An. 1um-241	Ŭ	0.029	+/-0.0507	0.0741	0.200	pCi/g		CILD	03/03/01	2317	07001	
Antimony-124	Ü	-0.00267	+/-0.0218	0.0299	0.050	pCi/g						
Antimony-125	Ü	0.00486	+/-0.0451	0.0642	0.100	pCi/g						
Barium-133	ΰ	-0.00884	+/-0.0213	0.0298	0.050	pCi/g						
Barium-140	Ü	0.0876	+/-0.109	0.190	0.200	pCi/g						
Beryllium-7	Ü	-0.0149	+/-0.139	0.223	0.500	pCi/g						
Bismuth-212		0.258	+/-0.236	0.184	0.500	pCi/g						
Bismuth-214		0.521	+/-0.0964	0.0523	0.100	pCi/g						
Cerium-139	U	-0.0179	+/-0.014	0.0208	0.050	pCi/g						
Cerium-141	U	0.00471	+/-0.0455	0.0433	0.050	pCi/g						
Cerium-144	U	-0.0258	+/-0.092	0.143	0.500	pCi/g						
Cesium-134	U	0.00766	+/-0.00792	0.0259	0.050	pCi/g						
Cesium-136	υ	-0.00702	+/-0.0509	0.0829	1000	pCi∕g						
Cesium-137	U	-0.015	+/-0.015	0.0238	0.050	pCi/g						
Chromium-51	U	-0.00412	+/-0.165	0.270	0.500	pCi/g						
Cobalt-56	U	0.00125	+/-0.0174	0.0289	0.050	pCi/g						
Cobalt-57	U	0.00517	+/-0.0112	0.0177	0.050	pCi/g						
Cobalt-58	U	-0.0125	+/-0.0164	0.0261	0.050	pCi/g						
Cobalt-60	U	0.00526	+/-0.0161	0.028	0.050	pCi/g						
iuropium-152	U	-0.046	+/-0.0435	0.0679	0.100	pCi/g						
iuropium-154	U	-0.0318	+/-0.046	0.0749	0.500	pCi/g						
uropium-155	U	0.0314	+/-0.0481	0.0678	0.500	pCi/g						
idium-192	U	-0.011	+/-0.015	0.0239	0.100	pCi/g						
on-59	U	0.0167	+/-0.0358	0.0605	0.100	pCi/g						
ead-210		14.5	+/-2.76	1.51	5.00	рСі/g						
ead-212		0.279	+/-0.0654	0.0389	0.100	pCi/g						
ead-214		0.593	+/-0.0966	0.049	0.100	pCi/g						
anganese-54	U	0.00742	+/-0.0159	0.0269	0.100	pCi∕g						

POBox 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

420-80 900-20 4010-00 4010-00

BORATORIES

r tomorism.

ysis

Company: Lawren Address:

PO Bor Mailstr

Liven

Report Date: March 20, 2001

Page 3 of 8

Contact: Project:

Debb² CES

Client Sample 11. Sample ID:

Project: LLNL00399 1.1.NL001 Client ID:

Parameter	Qualifier	Result	t	DL	RL	Units	DF	Anal	ystDate	Time	Batch	Method
ład Gamma Spec												
Gammaspec, Gamma, solid												
Mercury-203	υ	0.00795	+/-0.0176	0.0292	0.050	pCi∕g						
Neodymium-147	\mathbf{U}	0.0932	+/-0.247	0.403	1000	pCi/g						
Neptunium-239	υ	0.0127	+/-0.0839	0.132	5.00	pCi/g						
Niobium-94	\mathbf{U}	0.00977	+/-0.0147	0.0251	1.00	pCi/g						
Niobium-95	υ	0.0198	+/-0.0236	0.0356	0.050	pCi/g						
Potassium-40	U	0.190	+/-0.386	0.248	0.500	pCi/g						
Promethium-144	U	0.00676	+/-0.0157	0.0266	0.050	pCi∕g						
Promethium-146	U	0.0144	+/-0.0183	0.0303	0.050	pCi/g						
Radium-228		0.276	+/-0.114	0.088	0.500	pCi/g						
Ruthenium-106	U	0.187	+/-0.144	0.224	0.500	pCi/g						
Silver-110m	U	0.00447	+/-0.0135	0.023	0.050	pCi/g						
Sodium-22	U	-0.0125	+/-0.0165	0.0268	0.050	pCi/g						
Thallium-208		0.0731	+/-0.0361	0.0242	0.050	pCi/g						
The -230		0.521	+/-0.0964	0.0523	1.00	pCi/g						
Γhc -234		0.644	+/-0.770	0.621	5.00	pCi/g						
Tin-113	U	-0.0169	+/-0.0192	0.030	0.050	pCi/g						
Jranium-235	U	0.0176	+/-0.170	0.159	0.500	pCi/g						
Jranium-238		0.644	+/-0.770	0.621	1.00	pCi/g						
/ttrium-88	U	0.00524	+/-0.0166	0.0299	0.050	pCi/g						
linc-65	U	0.0284	+/-0.0395	0.0613	0.100	pCi/g						
irconium-95	U	-0.00738	+/-0.0292	0.0481	0.100	pCi/g						
Gas Flow												
PC, Gross A/B, solid												
lpha		7.42	+/-2.52	2.47	4.00	pCi/g		JEN	03/12/01	1855	66939	14
eta		13.0	+/-3.19	4.87	10.0	pCi/g						
Liquid Scint												
C, Tritium Dist, solid												
itium		9.84	+/-1.21	1.46	2.00	pCi/g		CAFI	03/03/01	1505	66518	15
1 Flow Analysis Federal						. •						
7.3.3 Reactivity, Releasab	al .											
· · · · · · · · · · · · · · · · · · ·		0.200		13.8	25000	a/ka	1	ADE	02/01/01	1100	26015	14
active Releasable Cyanide Volatiles-GC/MS Federa		0.200		13.0	23000	ug/kg		ADF	03/01/01	1100	00013	16
.P BNA SOLID 8270C 35	10 C											
Dichlorobenzene		0.00		8.15	50.0	ug/L	1	JWF	03/05/01	2109	67149	17
Dichlorobenzene		0.00		0.00915	0.750	mg/L	1					
4,6-Tetrachlorophenol		0.00		5.65	50.0	ug/L	1					
5-Trichlorophenol		0.00		0.0059	40.0	mg/L	1					
5-Trichlorophenol		0.00		0.0056	0.200	mg/L	1					
Dinitrotoluene		0.00		0.00485	0.130	mg/L	1					
achlorobenzene		0.00		0.00535	0.130	mg/L	1					

POBox 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407

(843) 556-8171 · Fax (843) 766-1178

Francis an recycled gaper

Meeting today's needs with a sisten for tamorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address:

PO Box 808 Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

3-Trichlorobenzene

3-Trichloropropane

4-Trichlorobenzene

4-Trimethylbenzene

Dibromo-3-

ropropane

U

 \mathbf{u}

υ

U

U

0.00

0.00

0.00

0.00

0.00

CES

Report Date: March 20, 2001

Page of 8

Client Sample ID: Sample ID:

57568 38226003

Project: Client ID: LLNL00399 LLNL001

Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
emi-Volatiles-GC/MS	Federal									
TCLP BNA SOLID 827	70C 3 510C									
Hexachlorobutadiene		0.00	0.0088	0.100	mg/L	1				
Hexachloroethane		0.00	0.0085	0.300	mg/L	1				
Methoxychlor		0.00	5.10	50.0	ug/L	1				
Nitrobenzene		0.00	0.0071	0.200	mg/L	1				
Pentachlorophenol		0.00	0.0079	10.0	mg/L	1				
Phenol		0.00	4.20	50.0	ug/L	1				
Pyridine		0.00	110.0	0.500	mg/L	1				
bis(2-Chloroethyl) eth	er	0.00	7.00	50.0	ug/L	1				

Pyridine		0.00	110.0	0.500	mg/L	ì					
bis(2-Chloroethyl) ether		0.00	7.00	50.0	ug/L	1					
m.p-Cresols		0.00	0.00535	20.0	mg/L	1					
o-Cresol		0.00	0.0063	20.0	mg/L	1					
ni-Volatiles-PCB Federal											
082/3550B PCB soil-Fed											
Aroc! 1016	\mathbf{U}	0.00	0.790	3.33	ug/kg	I	MM	03/02/01	0745	67057	18
\ro 221	\mathbf{U}	0.00	2.82	3.33	ug/kg	l					
Aroclor-1232	U	0.00	0.727	3.33	ug/kg	!					
Aroclor-1242	U	0.00	1.67	3. 3 3	ug/kg	ì					
Aroclor-1248	U	0.00	0.907	3.33	ug/kg	1					
troclor-1254	U	0.00	1.37	3.33	ug/kg	ļ					
roclor-1260	υ	0.00	1.43	3.33	ug/kg	1					
ds Analysis Federal											
'A 160.3 Mod. Solids, Total											
otal Solids		975000	120	200	mg/kg		TSM	02/26/01	1412	66511	22
trometric Analysis Federal											
'846-7.3.4 Sulfide, Reactive											
eactive Releasable Sulfide	U	-0.015	0.115	50.0	mg/kg	3	AAT	02/26/01	1602	66609	23
tile Organics Federal											
L 8260B Method List Soil Fed	i										
1,1,2-Tetrachloroethane	U	0.00	16000	40000	ug/kg	20000	CDS1	03/02/01	1441	66921	24
,1-Trichloroethane	U	0.00	11600	40000	ug/kg	20000					
,2,2-Tetrachloroethane	U	0.00	12000	40000	ug/kg	20000					
,2-Trichloroethane	υ	0.00	14400	40000	ug/kg	20000					
-Dichloroethane		65500	16400	40000	ug/kg	20000					
-Dichloroethylene		1350000	10500	40000	ug/kg	20000					
Dichloropropene	U	0.00	12800	40000	ug/kg	20000					

18800

12400

16000

16400

18800

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 · Fax (843) 766-1178

40000

40000

40000

40000

40000

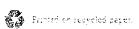
ug/kg

ug/kg

ug/kg

ug/kg

ug/kg


20000

20000

20000

20000

20000

Meeting today's needs with a tiston for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address: PO Box 808

Mailstop L-232

Livermore, CA 94551

Contact: Debbie Montero

Project: CES

Report Date: March 20, 2001

Page 5 of 8

Client Sample ID: Sample ID: 57568 38226003 Project: Client ID:

LLNL00399 : LLNL001

Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
olatile Organics Federal										
GEL 8260B Method List So	il Fed									
1.2-Dibromoethane	U	0.00	12800	40000	ug/kg	20000				
1.2-Dichlorobenzene	U	0.00	17600	40000	ug/kg	20000				
1.2-Dichloroethane	J	38400	10800	40000	ug∕kg	20000				
1,2-Dichloropropane	U	0.00	12800	40000	ug/kg	20000				
1,3,5-Trimethylbenzene	U	0.00	16800	40000	ug/kg	20000				
1.3-Dichlorobenzene	U	0.00	16800	40000	ug/kg	20000				
1,3-Dichloropropane	U	0.00	13200	40000	ug/kg	20000				
1,4-Dichlorobenzene	}	17900	16000	40000	ug∕kg	20000				
2,2-Dichloropropane	U	0.00	12000	40000	ug/kg	20000				
2-Butanone	ប	0.00	30400	200000	ug/ k g	20000				
2-Chloroethylvinyl ether	υ	0.00	37200	200000	ug∕kg	20000				
2-Chlorotoluene	υ	0.00	16800	40000	ug/kg	20000				
?-Hexanone	U	0.00	37600	200000	ug/kg	20000				
-C) oluene	U	0.00	16000	40000	ug/ kg	20000				
1-lsc pyltoluene	U	0.00	16000	40000	ug/kg	20000				
-Methyl-2-pentanone	υ	0.00	53600	200000	ug/kg	20000				
icetone	U	0.00	40000	200000	ug/kg	20000				
enzene	U	0.00	15600	40000	ug/kg	20000				
romobenzene	U	0.00	16400	40000	ug/kg	20000				
romochloromethane	U	0.00	18400	40000	ug/kg	20000				
romodichloromethane	υ	0.00	14000	40000	ug/kg	20000				
romoform	U	0.00	14400	40000	ug/kg	20000				
romomethane	υ	0.00	12400	40000	ug/kg	20000				
urbon disulfide	U	0.00	24800	200000	ug/kg	20000				
ubon tetrachloride	U	0.00	10400	40000	ug/kg	20000				
ilorobenzene	U	0.00	16000	40000	ug/kg	20000				
Joroethane	U	0.00	11200	40000	ug/kg	20000				
loroform		2340000	18800	40000	ug/kg	20000				
loromethane	U	0.00	14000	40000	ug/kg	20000				
promochloromethane	U	0.00	16400	40000	ug/kg	20000				
promomethane	U	0.00	13600	40000	ug/kg	20000				
hlorodifluoromethane	Ü	0.00	7200	40000	ug/kg	20000				
ylbenzene	Ū	0.00	14000	40000	ug/kg	20000				
tachlorobutadiene	Ü	0.00	16400	40000	ug/kg	20000				
propylbenzene	Ū	0.00	14000	40000	ug/kg	20000				
hylene chloride	Ü	0.00	17600	200000	ug/kg	20000				
hthalene	Ũ	0.00	11600	40000	ug/kg	20000				
ene	Ū	0.00	12800	40000	ug/kg	20000				
achloroethylene	Ŭ	0.00	16000	40000	ug/kg	20000				
enc	Ŭ	0.00	20000	40000	ug/kg	20000				
iloroethylene	J	34500	28800	40000	ug/kg	20000				
ilorofluoromethane	บ้	0.00	14800	40000	ug/kg	20000				

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Company: Lawrence Livermore Nat'l Lab (

Address:

PO Box 808 Mailstop L-232

Livermore, CA 94551

Contact:

Debbie Montero

Project:

CES

Report Date: March 20, 2001

Page 6 of 8

Client Sample ID: Sample ID:

57568 38226003

Project: Client ID:

LLNL00399 LLNL001

Parameter Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
olatile Organics Federal										
GEL 8260B Method List So	l Fed									
Trichlorotrifluoroethane	U	0.00	180000	200000	ug/kg	20000				
Vinyl acetate	U	0.00	30800	200000	ug/kg	20000				
Vinyl chloride	U	0.00	12000	40000	ug/kg	20000				
cis-1,2-Dichloroethylene	U	0.00	16400	40000	ug/kg	20000				
cis-1,3-Dichloropropylene	U	0.00	11200	40000	ug/kg	20000				
m,p-Xylenes	U	0.00	28000	80000	ug/kg	20000				
n-Butylbenzene	U	0.00	16400	40000	ug/kg	20000				
n-Propylbenzene	U	0.00	14000	40000	ug/kg	20000				
o-Xylene	U	0.00	14400	40000	ug/kg	20000				
sec-Butylbenzene	U	0.00	17600	40000	ug/kg	20000				
tert-Butylbenzene	U	0.00	12000	40000	ug/kg	20000				
trans-1,2-Dichloroethylene	U	0.00	14800	40000	ug/kg	20000				
trans-1,3-	U	0.00	9600	40000	ug/kg	20000				
D; opropylene										
/etnistry General Fed	eral									
SW9095 Paint Filter Test Fe	eder									

Paint Filter

PASS

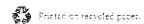
AAT 03/01/01 1609 67131

25

The following Prep Methods were performed

thod	Description	Analyst	Date	Time	Prep Batch
Soil Prep	Ash Soil Prep EPI A-021,A-021B,A-026	CCM1	02/28/01	1026	66623
Soil Prep	Dry Soil Prep EPI A-021,A-021B,A-026	WEO	02/26/01	0842	66493
846 1311	SW846 1311 TCLP Leaching	ЛL	02/27/01	1615	66727
846 3050B	846 3050BS PREP	HSC	03/08/01	1400	68021
846 3050B	846 3050BS PREP	KLD1	02/27/01	1300	66677
346 3510 €	3510C BNA TCLP Prep-8270C Analysis Fed	AEJ	03/01/01	0800	67016
46 3550B	3550B PCB Prep Soil FED	RDH	02/28/01	2140	66920
16 3550B	3550B PCB Prep Soil FED	RDH	03/02/01	1919	67197
46 7.3.3 Pr	SW 7.3.3 Reactivity, Releasable Cyanide-	TEMP	02/26/01	1717	66523
46 7.3.4 Mod	SW846-7.3.4 Sulfide, Reactive-Releasabl	AAT	02/26/01	1403	66608
46 7471A	EPA 7471 Mercury Prep Soil	ARD	02/27/01	1800	66624
46 9023 Pr	SW 9023 Halogen, Extractable(TOX) Prep	LS	02/26/01	1400	66569

he following Analytical Methods were performed


lethod

Description

SW846 9045C

ASTM D 2216

POBox 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

REBELT -	FISCHE 	e voy	70	N	E 18 ×	1	al i		48	39 39 20	16-6	85	CHI DE DI CONSUSSAMBLE DE LUNE ENTERNA DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA
Year and	(Res	Tues	11-11	and and	Jim.	/ m &		643	ALTINA TOPAC	SPEC	133	Sallerst Assall	2.0(y)00-0 = 11/024
GAZ-1	95ga	080	N/73	N	XX.	lds.	0	R	15	R	e	2	and form
GACAL	160/06			N	Xy,	us	37	C	R	R	R	R	GAL FIRM THEN BASE
W305993	11.64	2000	7	Y	XX	1215	2	Ř,	R	R	R	R	CAS FROM VIES 97
u उठ्दर्श्यप	. 436/b.6	0790	597	Y.	XX.	ids	3	Ř	12	E.	R	R.	GAL FILLS VITE SA
		_		Ŀ					-				

THE HITTER + CONT NO.

The state of the s

-

CSF Version 1.2 10/13/04

CES CASE SUMMARY FORM

Laboratory Identification:

C&MS Environmental Services Lawrence Livermore National Laboratory 7000 East Avenue. L-Code 251 Livermore, CA 94550-9234 (925) 423-6008 ELAP Certification No. 1554

Pucket 6	Corre	pletion	Date
E. SERVINGE S	or contact of	CONTRACTOR !	MATERIAL CO.

November 8, 2006

Client: Robert Friends RIPWM

Sample Receipt:

Four (4) samples were received on 30 September 2006 by CES for analysis. The samples were delivered with CES chain of custody, WDR and SHA documentation. Sample containers were intact and without any visible sign of tampering.

Project Name: 1930 no.023

CES DOOR: NO

Client DQO#: DQD 08-025

Client COC Number 5-4 CES COC Number 5-467

Client ID	CES ID	Requested Analyses
GAC-1	82092	GAB, Alpha TUPAC, Gamma Spec, Tritium, % Moisture
GAC-2	83093	GAB, Alpha TUPAC, Gamma Spec, Tritium, % Moisture
W305993	82094	GAB, Alpha TUPAC, Gamma Spec, Tritium, % Moisture
W305994	82095	GAB, Alpha TUPAC, Gamma Spec, Tritium, % Moisture

Case Narrative:

Analyses performed at LLNL were conducted using methodology as detailed in CES SOPs. Any technical of administrative problems encountered during analysis or other relevant comments are listed below. QC data for analytical batches are provided with data packet. All radiochemical data is reported as of the time of assay, and is not decay-corrected.

Additional Commonwe

Analysis were performed by Oceanal Proposersing Laboratories, LEC of Charleston, St., See offsite Laboratory case market and validation effection provided with this open for additional information.

I certify that this data package is complete as per the customer's request and compliant with technical and administrative requirements. All analytical work performed by outside contract laboratories is reposted on their letterhead and released by the associated laboratory, independent of CES. The Laboratory Director (or designees as scrifted by the following signature authorizes release of this data package.

Down of Wronds

Date November 8, 2006

David Wrnck, ext. 2-3413 CES Customer Representative

For document control purposes, user SHALL ensure that all working copies are identical to current electronic version.

http://www-cms.lint.gov/list_onty/cs/OA_docs/List_of_OA_Docs.html

All dates to the property of the object. As such, the client is responsible for meeting all appropriate institutional information management reconfirmants.

82092

COC Sample ID Listing

CES COC # 16462

CES Sample ID	Client Sample ID
82092	GAC-1
82093	GAC-2
82094	W305993
82095	W305994

CES ANALYSIS REPORT

Lawrence Livermore National Laboratory C&MS Environmental Services

Low Rad Screening

CES Sample ID: 82092

Client Sample ID: GAC-1

Result	MDC	Units	Date Counted	Method	Analyst
Not Detectable	100	dpm/g	09-20-06	LSC	crist

MDC: Minimum Detectable Concentration

CES Procedure: SOP-CES-P541

ELAP Certification 1554

Please Note:

Rad Screening is a tool used in the CES analytical laboratory which allows for the identification of possible radioactive samples. This, in turn, helps the technical staff reduce the possibility of cross contamination through the early segregation of samples and glassware. It also identifies samples with high activity, which may require special handling or exceed building limits. The result is not meant to be an absolute urbiased measurement since a complex sample matrix can

enter result is not metalt to be an absolute arbitised modsurement since a complex sample matrix ca cause suprificant interference (such as chenilluminescence).

Analyst Comments

2040 Savage Road. Charteston SC 29407 - (843) 556-0171 - www.gel.com.

Certificate of Analysis

Company Address	Lawrence Levent 2000 Fast Avenu Mainton L-232 Livernoses, Calife Ms. Debbie Mon CES - Normal D	omaa 945 Ress	S1				(8.	epont (Name: CApt	ides 7, 1	2006
	Client Sample Sample ID: Matrix Collect Date: Receive Date: Collector:	ID:	82892 17247100) XX 20 SEP-06-12:00 22-SEP-06 Client			Prot	ect, nt ID	LLNL10201 LLNL002		
Parameter	Qualifler	Result		BJ.	MI.	Units	DE	Analysillate	Time	Butch
Solida Analysis Federa	(
EPA 3NL5 Mod Solid Trad Solids	n Tour	\$25000		20.3	43.9	mg/kg		08A209/25/0	6,1623	572351

The following Analytical Methods were performed

Description

SM 2540G

Method

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Lawrence Livernore Nat 1 Lab (Company

2000 East Average Address Madittop L-232

Livernance, California 94551 Ms Debble Montput

Contact Project EEE - Normal Del verable

Report Dans Chanter 25, 2000

LLNL00201

LLNL002

Client ID:

Chent Sample II3: 821192 172471001 XX Sample ID Matrix 20-SEP-06 Collect Date: 7 - SEI*-(16 Receive Date:

Collector Client Parameter Qualifier Result Cocertainty TPU 11.18 Enits DF Analyst Dair Time Batch Mtd DIL Gravimetric Solids ASTM D 2216 & Moustire Federal 1,80 DATE - 09/24/06 2648 573583 | 1 Montant DEFECTION Rud Alpha Spec Analysis Alpharpec Am. 43, Solid o-0.0357 0.102 ++-0.1058 0.110 Americani-241 EL: R 1306.36 pt W 10/04/06 7716 572 28 2 Americano-144 £3 0.0196 47-0.0716 0.0628 44-0.0717 0.000 KVE Curom-242 U 0.30 +/-0.0362 0.0553 +/-0.0867 D.00 SEVE. Curum-245/244 -0.00% -0.008750.102 # -0.0001 £1 1.00 TAC NO Aljent two Put Solid Platerson-211 0.0154 47-0.0471 COURT . CHANT 43,180 DEW RDD 10/06/06 0711 572 31 3 Manusium - 239/240 k.t -0.0136 +/-0.0252 0.0738 32-0.0255 0.400 pC de Alphagye TV, Isdal Discount-118 U 0.110 6-0.110 0.153 */-011L 11,000 pC/g DDR1 (0/16/06/08)3 533981 4 Trusynam-210 0.274 +/-11.1.60 0.0564 47-0.148 0.700 pC1/g Thermon-242 w/-D.104 0.290 17,1:50 E/1256 L 44-12 2357 DE'HE Alphages U. Tolld. Cramma-253/244 0.726 41-12.133 WATER 27 a/-0.135 0.200 pk:Will DDR1 10/10/06/0745 576575 a Lirainum-235/236 6.1b7 al-0.105 D:200 0.132 */-0.100 DCV# D.117 +F-0.0863 Urannum-238 0.0623 4-87857 B.200 BELLE Rad Gamma Spec Analysis Gammaspec, Gamma, Smid (Standard Lan) Americana -341 Li -IL/Orden 6-0.003 0.0402 al-Bots 0.200 pc'up MOH) (050200-1753-574349 (0) Regullion-T 47 0.0171 +2-0.098 11 825 0.008 DOMEST BCVg Lesium-127 C KENTER H-0.0131 0.0441 +/-0.0131 25.0 PCVB Cobult-60 U ODITO H-0.0173 0.0478 ac-0.0133 0.050 pt Mg Pettstimm-40 16-0312 17406 +1-0512 0.500 113 pCVe. U. Sedmer-22 0.0126 14-0,004 D.Ostob. +/-0.014 0.093 pCVs Thomain-228 0.0654 -/-0.0196 UI OCK) + -0.0196 BCVE Uranua-235 ŧ 0.0779 47-110895 0.500 D.188 -/-UU505 WEVE Crustants-238 UF 0.70 +7-0.151 0.531 #F-D [31 130 pCVg Rad Gas Flow Proportional Counting GFPL Gross A/B. solid. 0.978 07-01512 Aipha 11:63 n/-0.529 0.500 PCVE JXS4 10/11/06 1913 577752 11 Data 9.90 +/-121 186 2-1.50 1.50 pCl/g Rad Liquid Scintillation Analysis

LSE Trinam Diet Solid

2040 Savage Road Charleston SC 29407 - (943) 556-8171 - www.gel.com

Certificate of Analysis

Company

Lawrence Evermore Nat'l Lab.(

Address

7000 East Avenue Mailstop 1-232

Livermore, California 94551

Contact

Ms. Debbie Montero

Protect

CES - Normal Deliverable

Client Sample ID:

Sample ID:

82092 172471001

Project: Client ID:

LLNL00201 LLNL002

Report Date: October 25, 2006

Parameter. Qualifier Result Units Time Batch Mid Uncertainty DI. TPU RL. DF Analysi Date Rad Liquid Scintillation Analysis LSC Tenuan Dist. Solid 45-7.03 +4-7.03 20.0 ATH2 16/29/06/064 572521 13 Tritium THE pCVE.

The following Dean Mathods were preformed

Method	Description	Analyst	Date	Time	Prep Batch	
Ash Son Frep	Ash Soil Prep, GL-RAD - A-021B	1_XM2	10/0/2/06	1355	571849	
Dry Soil Prep	Dry Soil Prep GL-RAD-A-031	IMBI	09/23/06	1648	571848	

The following Analytical Methods were performed

Method	Description
1	ASTM D 22(6 (Modified)
2	DOE EML HASL-300, Am-05-RC Modified
4	DOE EML HASL-300, Pu-11-RC Modified
4.	DOE EMI, HASIL-300, Th-01-RC Modified
5	DOE EML HASL- (00. Th=01-RC Modified)
h.	DOE EML HASL-300, Th-01-RC Modified
7	DOE EML HASL -300. Ttt-01-RC Modified
8	DOE EML HAST, 300, U-02-RC Modified
Q.	DOE EML HASL-300, U-02-RC Modified
4D	EML HASL 900. 4 5,2 3
41	EPA 900.0 Modified
12	EPA 900 0 Modified
13.	EPA-90n 0 Modified

Surrogate/Tracer recovery	Test	Recovery	Acceptable Limits	
Chrium-244	Alphaspec Am245, Solid	31	(7.6%-125%)	
Curium-244	Alphaspec Am241, Solid	251		
Plutonium-242	Alphaspec Pu, Solul	7/	415%-125%)	
Carrier/I moer Recovery	Alphasper Th. Sond	65	(15%-125%)	
Granum-232	Allynaspec IT, Solul	89.	(25% - [25%)	

Notes

The Qualifiers in this report are defined as follows

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Comming : Lawrence Livermore 83(11) (0)

Adilress

7000 East Avenue Mailanop L-233

Livermore, Cabitoma 94551

Contact

Ms. Debbie Montens

Project: CES - Normal Deliverable

Client Sample ID Sample ID 17247(00)

Project Client ID: LLNLordol LLNLord

Report Line Occuses 25, 2006

Parameter Qualifier Result Uncertainty DL TPU RL. Units DF Analyst Date Time Batch Mrd

- A quality control analyte recovery is outside of specified acceptance criteria
- Result in less than value reported
- > Result is greater than value reported
- A. The TIC is a suspected aldol-condensation product
- B. Target analyte was detected in the associated blank
- BD Results are either below the MDC or tracer recovery is low
- C. Analyte has been confirmed by GC/MS analysis
- D. Results are reported from a d-fitted aliquor of the sample.
- H Analytical holding time was exceeded
- Value is estimated

N/A Spike resovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

- K Sample results are rejected
- U. Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- 1/1 Camma Spectroscopy Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- Z. Print Filter Test-Particulates passed through the filter, however no free figurds were observed.
- RPD of sample and displicate evaluated using +--RL. Concentrations are <5X the RL.</p>
- d 5-day BOD The 2-1 depletion requirement was not mot for this sample
- h Preparation or preservation helding time was exceeded

The above sample is reported in a dry weight basis.

82093

COC Sample ID Listing

CES COC # 16462

CES Sample ID	Client Sample ID
82092	GAC-1
82093	GAC-2
82094	W305993
82095	W305994

CES ANALYSIS REPORT

Lawrence Livermore National Laboratory C&MS Environmental Services

Low Rad Screening

CES Sample ID: 82093

Client Sample ID: GAC-2

Result	MDC	Units	Date Counted	Method	Analyst
Not Detectable	100	dpm/g	09-20-06	LSC	ernst

MDC: Minimum Detectable Concentration

CES Procedure: SOP-CES-P541

ELAP Certification 1554

Please Note:

Rad Severning is a root used in the CES analytical laboratory which allows for the identification of possible radioactive samples. This, in nurs, helps the technical staff reduce the possibility of cross contamination through the early segregation of samples and glassware. It also identifies samples with high activity, which may require special handling or exceed building limits. The result is not meant to be an absolute unbiased measurement since a complex sample matrix can vause significant interference (such as chemiliminescence).

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 (843) 556-8171 - www.gel.com

Certificate of Analysis

Contact:	() hwronce Livernore Na ()(0) East Avenue Middelp L-232 Livernore, California 9 Ms. Debbie Montero				Ж	eport Date: Oct	dur T.	YXXII	
Project:	CES - Normal Delivers	rble							
	Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector:	82095 172471002 XX 20-SEP-06 12:00 22-SEP-06 Client		Prois Clies	ect nt ID:	LLNL00201 LLNL002			
Parameter	Qualifier Res		RI.	Units	DF	AnalystDate	Time	Batch	Method
Solids Analysis Federa	il								
EPA 160.3 Mod. Solid Total Solid	ds_Total -98500	25.4	39.8	ing/kg		GXA209/25/06	1622	572357	1
The following Analyt	ical Methods were perform	neel							
Method	Description		1	malyst Comm	ents				
1	SM 2540G								

2042 Savage Flow! Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Calvernat Livermore Nat 1 Lab) Company

2000 Hast Avenue Addr-Ministon L-137

Rad Gas Flow Proportional Counting

Rad Liquid Scintillation Analysis LSC, Trituin Dist. Solid

7.10

2.46

2.16

11

1/-1/29

44-147

41-6-54

DIFF. Grass A/B. solid

Alpho

Tettian

Bets.

Livermorp, Chlifogini 945 11

Conside Ms. Debbie Mintery Freque CES - Normal Deriverable

> Client Sample ID: Sample ID Matrix:

Collect Date: Receive Date: Collector

172471002 XX ZO-SELLON

Project: Chent ID

LENE/02/01 DINEGOS

Report Dam: Oknober 25, 2006.

22-SF31-(W) Cheni Parameter. Qualifier Result RI. Units DF Analyst Date Uncertainty DL TPU Time Batch Mid Gravimetra: Solids ASTM D 2216 & Mensury Federal Maudure 1.// (MINI 1977 TOM 1648 TT208T DETERMINE Rad Alpha Spec Analysis Alphicanes Am. 42 Sound 0.00424 w-0.003 0.0636 +--0.013 0.100 10/04/06/2226. 572128 Arrests auto-24. pCI/B RDD IJ Americam-243 M DIESE. +/-0.0291 0.0000 + B.0001 DESCRIPTION. 10/1/9 Curson-242 EL1011% - BILLI 0.0348 4/-07029 1.791 pDVs UCurum-243/244 -0.8111 -ontro 0.005 *=-0.0103 1.00 of the Ū Alphasper Pa. Social Planatum-218 K) onie: ej=0.0417 0.0865 41-0.0413 001:0 mCWy. 16/06/06 0733 532131 II Platonium-219/24/1 U BOE!7 +/-- DOMEST 0.06/T +F-0.0218 0.190 DENE Ministrate The Sould Титып-228 0.140 15-17 149 0.110 H-0.158 0.200 parting. DDR1 (0/16/00 0052 517087 4 Theran - 2 kg 11.7.40 47-17.221 EXH +/-0259 6,200 DE: 1/2 Thomam-237 0.233 47-0.120 0.103 +/-0.125 0.200 110/1/2 Alphaepre D. Stold Uruninn-219/234 0.563 6J-11,295 0.140 47-0.122 0.200 pClife DDR1 1(V)(V00 0745 576515 Brassan-235/236 DUST NO +A-GUISET 0.0955 44-0.0887 0.200 116 0/17 N NH DENS. 47-11/290 0.523 +/-0.527 11.20x7 Uresann-216 Rad Gamma Spec Analysis Conveyages, Games, Sales (Standard List) 0.0871 J-0.0496 0.131 42-0.0096 Anaryteaum-241 D 0.20KF pt. Wg HANDERM | 754 574348 | 111 北部区 0.500 Berrilam-T 11 17-0.121 D.384 +/-D.121 DE VE Cesamy-137 0.0622 WHILD THE 0.0467 ** 0.0166 15.0 U pCare. Cabalt-60 U 0.0314 e/-0.014T 0.0545 +- 0.0147 0.050 HCV_E +/-0.287 0.433 47-0.282 0.500 PO/s Pour-une-III D.£44 41 0.0165 e-0.0146 OWER s-United BLOSET Sodium-L pt 3/2 0.0685 +/-0.0451 Therrique-225 0.356 +/-D.04T1 pCV2 Urummy-235 0.055 45-0.433 0.232 45-0.135 0.500v OCV/s Uraminun-238 1.08 11-0.500 CAR 14-0.500 1.00 PCV2

LT

5:33

15.6

(+ T AT)

44 - 1.46

ni-634

(I), 579.1

1.50

50.0

person

PC49

00000

13384

KB/11/06 2009 577752 ()

ATHI 09/20/06/1658 572521 11

2040 Savage Road Chaneston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company Lawrence Livermore Nat'l Lab (

Address 7000 East Avenue

Mailton L-212

Livermore, California 94551

Comact Ms. Dentite Mentero

Project: TES - Normal Deliverance

Client Sample ID: Sample ID: 82093 172471002

Project Client ID Report Day October 25, 2001

LLNL0028) LLNL002

Parameter	Qualifier	Result	Uncertainty	DL	TPL	RI.	Units	DF Analyst Date	Time Batch Mid
The following I	Prep Methods were pe	eformed							
Method	Description				Analyst	Date	Time	Prep Batch	
Am Soil Prep	Ailt Soil Prep. GL-RAD-A-0218			LXM2	10/02/06	1559	571849		
Dry Soil Prep	Dry Soil Prep Cit	KAD-4-0	21		ANGEL (189/23/06	(548)	371948	

The following Applytical Methods were performed

Method	Description	
	ASTM D 2216 (Modufied)	
	DOE EML HASI - 100, Am -05 - RC Modified	
	DOP PML HASL-100, Pa-11-RC Modified	
	DOE EML HASL-300, Th-01-RC Modified	
	DOU EML HASE-300, Th-01-RC Modified	
	DOF FML HASL-100, TH-OL-RC Modines	
	DOE EMI. HASL-300. Th=01-RC Moulinest	
	DOE EMS. HASL-100_11-02-RC Medition	
	DOE FAIL HASIL-JOU, D-OZ-RC MINDING	
(4	EML HASE 300, 4 5.2 5	
1	EPA WALL Modified	
2	EPA 9000 Modified	
3	EPA 906.0 Missilied	

Surrogate/Trucer recovery	Test	Recovery	Acceptable Limits	
Conum-244	Alphospec Sm243 South	3.6	1159-12591	
Ciorum-244	Alphasper Am 14.1 Soul	5.6		
Phuemium-242	Alphuspec Pu. Solid	76	115/4-125%	
Carrier/Trans Receivery	Alphasper Th. Solid	647	1(5%-125%)	
Vianum-211	Alphanpec U. Solid	- 60	LEVE-12VB1	

Norm

The Qualifiers in this report are defined as follows:

- A qualify control analyte recovery is outside of specified acceptance crossing
- « Result is less than value reported
- Result is greater than value reported
- A. The TIC is a suspected aldof-condensation product
- B. Target analyte was detected it the associated blank

2040 Savage Road. Charleston SC 29407 - (843) 559-6171 - www.gel.stxtt

Report Door Occupy 23, 2346

Certificate of Analysis

Ma. Debbie Monters Connact: Property CBS-- Normal Denveralities 11.NL00201 Client Samule ID: 82093 Chem In ELN2.002 172471002 Sample ID Parameter Oznaitfier Result THE Angiest Date. Cocertaints DL TPU HX. Emile Tom Barch Mid.

BD Results are either below the MDC or tracer twowery is low
C Analyte has been confirmed by GC/MS analysis
D Results are reported from a diluted alignor of the sample

Lawrence Livermire Nat 14 do (

Livermore, California 94551

7007 East Avenue

Mallaton L-23T

H Analytical holding time was exceeded

Company

Address.

1 Value is estimated N/A. Spike recovery limits do not apply. Sample concentration escends spike concentration by 4X or more.

R Sample results are rejected

U. Analyte was analyzed for, but not detected above the MDL. MDA, or LOD.

Ul Comma Spectroscopy — Uncertaint identification
X Crossift Case Norrative, Data Surumary package, or Project Manager concerning this qualifier

Y QC Samples were see spoked with this compound

Z Paint Pilter Twit—Particulinus passed through the filter, however no free liquids were observed.
A RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL.</p>

d 5-day BOD.—The 2 I depletion requirement was not met for the sample

h Preparation of preservation holding time was exceeded. The above sample is reported on a dry weight basis.

COC Sample ID Listing

CES COC # 16462

Client Sample ID
GAC-1
GAC-2
W305993
W305994

CES ANALYSIS REPORT

Lawrence Livermore National Laboratory C&MS Environmental Services

Low Rad Screening

CES Sample ID: 82094

Client Sample ID: W305993

Result	MDC	Units	Date Counted	Method	Analyst
Not Detectable	100	dpm/g	09-20-06	LSC	ernst

MDC: Minimum Detectable Concentration

CES Procedure: SOP-CES-P541

ELAP Certification 1554

Please Note:

Rad Screening is a tool used in the CES analytical laboratory which allows for the identification of possible radioactive samples. This in turn, helps the technical staff reduce the possibility of cross contamination through the early segregation of samples and glassware. It also identifies samples with high activity, which may require special handling or exceed building limits. The result is not meant to be an absolute unbiased measurement since a complex sample matrix can

cause significant interference (such as chemilaminescence).

2040 Savage Fload. Churieston SC 29407 - (843) 556-8171 - www.gail.com

Certificate of Analysis

Compan Address Conner Proper	Maristop L-231 Livermore, California 9 Mi. Debote Montero	452)				R	грит Паід: Оста	her 2 20	Dr.	
	Client Sample ID. Sample ID: Marrix Collect Date: Receive Date: Callector	82094 172471069 XX 20-SEP-06 12 22-SEP-06 Client	2300		Pros Clie	ect. nt ID;	LLNL00201 LLNL002			
Parameter	Qualifier Res	alt	DI	RI.	Cuits	DE	AnalystDate	Time B	latch	Method
Solids Analysis Feder 129, 160, 1 Mad. Sol Teral Solid		0.	bх	19:3	тофіку		GXAI 09/25/06	1632 57	2397	n
The following Analy	tical Methods were perforn	ned:								
Method	Description			A	nalyst Commi	ents				
Fi	SM 254(X)									

2040 Savage Road Charleston SC 29407 - (813) 556-8171 - www.gel.com

Report Date Ocustor 25, 2008.

Project 11 NL00201 Climit ID: 11 NL002

Certificate of Analysis

Company Lawrence Livermore, Nat 1 Life 1

7000 Emil Avetus Address

Mailton L-232

Livermore, California 94551

Ms. Debbie Montes

Contact Project. CES - Surmal Deliverable

Client Sample ID:

82094 177A71WB XX 20-5EP-06 22-5EP-06 Matrix Collect Date: Receive Date: Collector Clienti

Parameter	Qualiffer	Result	Uncertainty	DI.	TPU	Rt.	Units	DF Analys	t Date Time	Butch &	tto
Gravimetric Solids											
ASTAF IT 2216 S. Morrow	e Kederal										
Monope		0.905					percent	JMB1	DICTION LIME	572983	- 1
Rad Alpha Spec Analysis											
Alphanen Am249, Seld											
Americani-141		-0.0201	47-1310730	0.0699	+(-0.0239	0.100	M. M.	EDD	10/04/06/2226	572138	15
American-343		801.0	47-11/06/11	0.06.15	47-11.0639	13,1183	nCWg		1441.714.		
Curum-342	- 0	0.00	>-0.02×E1	0.0317	==-0.020T	1,000	pCen.				
Cornen-341/244	L	-0.01	+/-15.00 39	91,070	4/-00139	1.00	THE PARTY				
Alabamer For Eulah							755				
Proceedings-238	154	101000015	45-100044	0.0715	47-0.0244	0-T00	pCt/g	ROD-	10/06/06 0733	552131	-
Pharmon 239/240		3180513	+6-0.0223	11.0595	4/-0.0227	EL100	pCv/c	1000	CT-CT-CT-CT-CT-CT-CT-CT-CT-CT-CT-CT-CT-C		
#/phicopes The Solid		-					47.4				
Thorogra-228		0.586	4-0:169	0.451	+/-0.170	VIL2002	pCl/g	Dine i	10/16/46 0850	425967	6
Thorney-230		11678	+6-0.224	BILL	ar-0.252	0.3140	pcur.	ES FERRY	100 110/100 510/20	2010021	7
Thorson-232		Rafe	+0.175	0.100	PER 0.189	0.200	TEVE				
		201120	11-11-11-0	Sering's	P. Carlot	and the same of	the same				
Alphalous 12 Social		0.569	Japan	0.140	47-0/289	0.300	military.	men)	10/10/00 0745	inces	
Omnion-233/234 Omnion-233/236	0.	0.582	+/-0.234 +/-0.0553	0.0641	W-BR222	67.700	bC.e.b	OURI	10/10/01/025	216018	7
Urasson-214	10.	0.302	4/-0210	11.0665	44-61222	0.200	PCVE				
Rad Gumma Sper Auales	6	O. HALL	41-0-210	111.000		and the	fu-n.				
Licenseque Licensea 50				0.53	CO-AGAIN	1-345		CONT	Market Land		
Americani-24)	U	-0.03	H-90832		41-03352	37.200	TICNE	MHH	10xx7x0k 180x	574148	3.0
Beryllium-7	L	0:0166	-1-2) 0990		-/-0.0994	0.500	DCAE.				
Comm-137	U	-0.00947	44-0.0129	0.0365	m=0.0129	25,0	ben E				
Estal(-fil)		0.0050	+/-00183	0.0423	44-D.0187	0.400	10.00				
Petros ann-10	11	0,65%	+i-0.27)	0.371	47-0.271 47-0.0109	0.050	DC/A				
Scomm-22 Thoron-228	14	0.0130	+/-11.0109	(LD42)	+/-0.0109	11100	DC-0.E				
Uvanium-235	-17	0.111	e=-0.101	0.00	101.0-14	0.500	De 1/5				
Uruntimi-233	30	0.00	45-(1.61))	0.817	+1-0.616	1.00	PCV2				
Rad Gas Flow Proportion			*1-100111	16067.0	41-0010	1.00	Berna				
The state of the s	mi s-nemeral										
GFPC OrmitA/B solid					200		1000	10000	A DESCRIPTION OF THE PARTY.		
Alpin		13.2	+/-1.55	-1.01	10-1.6S	0.300	pC3/2	1369	HR11/06/2009	211173	1.1
Deta	Land Land	31.0	41-714	213	11-246	1,50	DCAR.				
Rad Liquid Scintillation	runtysta										
Life Trisam Dea Soud											
Tenti		12.2	41-7.64	12.0	+1-7.63	30.0	pO(a	ATIC	69/29/06 0714	573531	R1

2040 Savage Flouri Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Liewrence Lawrencey Not'l Liab V. Company

700) East Avraise -Athlress -

Mailung L-252

Livermitte, California 94151

Ma District Mentican Comount Project CES - Norma Denverable

> Client Sample ID Sample ID:

82004 172471003

Report Day | Account 25, 2006

Project. LLNL00201 LLNL002

Parameter	Qu	alifier	Result	Uncertainty	Dt:	TPU	ikt.	Ligits	DF Analyst Date	Three Batch Mic
The following	Prep Methods	чесе ре	erformed							
Method	Description	9				Analyst	Date	Time	Prep Batch	
Add Soil Prep.	Ath Total Pr	m.GL-	RAD-A-	021M		LXM3	(0/02/06	1355	571849	
Dry Soul Prep	Dry field (%	rp GL-	RAD-A-L	21		MARI	(州)工工作的	1648	3T1848	
The following	Analytical Mei	hods w	ere perfor	med						
Method	Description									
	ASTM D.Z.	Ho rMo	diffed							
2	DOE EMI, HASE-300, Are-05-RC Mogned									
5	DOE RML MASL-300, Pu-11-RC Modified									
4	DOEEM).	RASE-	100. To-0	RC Modified						
5	DOEEML	HASL-	300, Th-0	-RC Mountind						
6	DOE ENG.	HASL-	100. Th-0	I-RC Modified						
	DOE EML	HAST.	100. Th-0	I-RC Modified						
×	DOLEME	HASL-	300. I L-02	-RC Mounted						
0	DOEEML	MASL	300. EH-02	-MC Mounted						
10	EML HAST	300 4	523							
18	EPA 9000	Moitthe	d							
12	EPA 9800	Ministre	d .							
1.8	EPA WM G	Modifie	0							
Surrogate/Tra	CEF PECONETY	Test				Recovery %	Accepta	able Lions		
Curiom-244		Pulpin	respect force	13, S1064		90	19.59	1259		
Curtum-384		Aboti	INDIE AND	M. Soffel		80				

Surrogate/Tracer recovery	Test	Recovery %	Acceptable Lions	
Curiam-244	Alptrospec Am243, Scotal	90	(459-1250)	
Curum-344	Alphineper ArrC43, Solid	80		
Philonom-147	Alphasper Pu. Solid	77	(759-125%)	
Carsen/Tracas Recovery	Alphages Th. Solid	6.2	(759-125%)	
Deseupro-232	Alphasper by Selar	77	1279-12791	

Noice

The Qualiflers in this report are defined as follows

- A quality control analyte recovery is outside of specified acceptance criteria
- Result is less than salue reported
- > Result is greater than value reported
- The TIC is a suspected aldol-condensation product
- Target institute was detected to the associated blimk.

2040 Savage Road Champsion SC 29407 - (845) 556-8171 - www.gel.com

Report Date: October 23, 2000.

Certificate of Analysis

CE5 - Normal Deliverable Philippe Client Sample ID: 82094 Property IDA LENL00201 172471003 LENLOO2 Sample ID Qualifier Parameter. Result Locertaints THE TPU 825 Unité DF Analyst Date Time Batch Mid

BD Results are either below the MDC or tracer recovery is low.

C Analyte has been confirmed by GC/MS analysis.

Lawrence Lawerman 2-n 7 Lab s

Livernous, California 34581

2000 East Avenue

Mrs. Dunning Wramuser

Mailmon L-213

D. Passade one network from a Chand attend of the name.

D Results are reported from a diluted aliquot of the sample.

H. Analytical holding time was exceeded.

I Value is estimated

Company.

Address

Contact

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or mark

R Sample results are rejected

U. Analyte was analyzed for, but not dejected above the MDL MDA, or LOD.

Gamma Spectroscopy — Uncertain identification
 Consult Case Natraine, Data Summity package, or Project Manager concerning this qualifier

Y QC Samples were not spring with this compound

Z. Paux Filter Text-Particulates passed through the filter, however no free inputs were observed

RPD of sample and displicate evaluated using +/-RL. Concentrations are <5X the RL

d 5-day BOD—The 2.1 depletion requirement was not met for this sample. h Preparation or preservation holding time was exceeded.

The above sample o reported on a dry weight basis

82095

COC Sample ID Listing

CES COC # 16462

CES Sample ID	Client Sample ID
82092	GAC-1
82093	GAC-2
82094	W305993
82095	W305994

CES ANALYSIS REPORT

Lawrence Livermore National Laboratory C&MS Environmental Services

Low Rad Screening

CES Sample ID: 82095

Client Sample ID: W305994

Result	MDC	Units	Date Counted	Method	Analyst
Not Detectable	100	dpm/g	09-20-06	LSC	ernsi

MDC: Minimum Detectable Concentration

CES Procedure: SOP-CES-P541

ELAP Certification 1554

Please Note:

Rad Screening is a roof used in the CES analytical laboratory which allows for the identification of possible radioactive samples. This, in turn, helps the technical staff reduce the possibility of cross communication through the early segregation of samples and glassware. It also identifies samples with high activity, which may require special handling or exceed building limits. The result is not meant to be an absolute unbiased measurement since a complex sample matrix can cause significant interference (such as chemiluminescence).

GENERAL ENGINEERING LABORATORIES, LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 www.get.com

Certificate of Analysis

	Company Address Clintoct People	Lawrence Litem 7000 East Avenu Mattetop L 257 Lyvermore, Califo Ma. Debbie Mon CES - Normal D	nena 143 nena 143	51				R	rpen Dair Hea	they 7, 2	2006	
		Chem Sample Sample ID: Matrix: Collect Date Receive Date Collector:	ID;	82005 (72471004 XX 20 SEP-06 (2 23-SEP-06	2:00			res t	LLNL00201 LLNL002			
Parameter .		Qualifier	Hessit		DI	RI.	Linits	711	AnalystDate	Time	Batch	Method
Solids Analy	sis Federal											
EPA 160.3	Mad Solids	Trysu										
Total Solid	ă.		027(000)		266	41.0	mas/kar		GXA100/5/06	1600	572363	-
The follows	ng Amdytic	al Methods were p	erforme	1								
Method		Description					Analysi Canon	aents				
1		5M 2540G										

GENERAL ENGINEERING LABORATORIES, LLC

2040 Savage Road Charleston SC 29407 - (843) 536-8171 - www.gel.com

Certificate of Analysis

Lawrence Literoons Nat'l Lab / Cargan

TOWN East Avenue Address

Maionet 137

LOSSWANZ California 14551

Ms. Delittie Moinpin Contact

Property EVS - Normal Deliverable

Chent Sample (D: Sample ID: Matrix: College Date Receive Date:

Collegue

82098 172471904 XX 20-SEP-06 22-SEP-06

Prosect Cliest ID

LNLOGGI

Report Date: (Detalor 25, 2906)

	Collector			Climi							
Parameter.	Qualifier	Besult	Uncertainty	DI.	THE	10	Links	DF Analy	o Date	Time Burch	Mid
Gravimetric Solids											
ASTM 13-1276 S. Monta	are Federal										
Moiston		3.004					percent	IMBI	100/23/06	1648 372083	
Rad Alpha Spec Analysi	16										
Alphasper Am245, Solli	ē.										
Americium-24)	13.1	0.00563	H-00259	DESIGNAT	41-0109	98.100	TEVE	REM	100/06/06	0001 572 28	
American-243	10	MARKET	147-03/03/2	0.0424	m1-0.0243	1823.48	PCVp				
Curious-342		0.0716	40-0.0045	0.0216	45-00034B	100	PCVE.				
Curum-243/2/44	10	(9.020)	47-01028	0.0425	46-0.0281	1.187	TEN.				
Alphaspec Pu. Solid											
Phinamana 238	30	10.00 ##	46-00041	11/2771/6	44-03343	p.im	pCVp	RUD	DM96/06	0744.372131	. 1
Philippinan-230/240	41	DX0.34	47-07/343	DATE	ml-610543	6-100	ptve				
Riphiciper Th. Solai							1.7				
Thorner 519		03,277	47-0.135	33.337	41-23 1-22	A26	(CVr.	THEFT	10/16/06	IRS: 577667	14
Theenes-250		70:43	96-0.107	6.122	-e(-0.1)()	(4200	PCVc	Parish !	100 160 000	the many	
To rinny-2)2		0.220	+(-0.1)0-	0.0458	+1-9.127	11.2383	pCV _E				
Manager D. Sond							100				
Dranum-23,9714		0.461	87-0.750	0.0936	+1-0.177	V-200	PCVE	Tables	1000000	(1745-376338)	×
Camarain - 285/236		13.103	-1-0.0809	11 D 506		0.200	PCVs	Delie.	114 Familie	111405-211100-52	
Limbum-238		0.263	es-D.126	0.0255	w-0.132	0.200	1675				
Rad Gamma Spec Analy	CSES	1100		7,400,000	20172	1.400	Leve.				
Gammarphy Gamma S		of Line									
Acumolium 141		0.00796	~2-Ω.0Z04	power	-1-0.0294	0.200	DEVE	MARIE	COLUMN TOWN	DESCRIPTION	11
Baryilann-1	Ü	-0.0744	+3-0.146	11.257		Y-200	pCi/s	Marin	TENESCO.	The present	
Cintoun-157		D.000235	H-00181		+/-DINI	25.0	prive.				
Cuhill-60	U	0.0168	s/-0.0225		1/-11/0205	0.050	DCVE.				
Potaroum-40	1.0	1.12	i√-0.366		+/-(L)nn	(1.100	PCV				
Galisia-24	336	D.0002784	1/-11/02/04	100000000000000000000000000000000000000	+-0.0264	E-050	HCVE				
Therapie 226	- 1	0.415	=/-(0.0467		+ 0.0467	10.1251	pCVE				
Drannow-24*	0.1	Relies	-0.0736		-4/-0) (1756	17.500	WEV.				
Ottomano 258		1.115	+1-0,574	11.30%		1.00	7CV				
Rad Cas Flow Proportio	wal Counting		-	1		1,000	148				
GEFT Grant AVE 1100											
Alpha		1.0.1	411/44	1.14	41-138	U.500	pCu _E	20084	John Service	2000 371752	111
Bris		26.0		2.00	+4-2.91	1.50	HC 6/2	69.61	Trans towns	Seed Stille	
Rad Liquid Sentilitation	Azadysta	-		2.000	11.	100	0				
ISC Truse Dec Son											
		410	200	11.6	2000	20.0	metal.	Santa	Victoria	mail eddres	
Transact		24.6	45-8.51	118	109.52	20.0	Le All	71117	F105,570,39	(17)4 . 62(53)	11/

Commercial Propert

Livermore Validation 94551 Ms. Debbny Moniem-CDS-Noonal Debroration

Clarit Sample ID Sample ID:

82095 172471104 Chent ID

LLNL00201 LLNL002

Parameter.	Qu	alitier	Result	Uncertainty	DI.	114	111	Units	DF Analyst Date	Time Butch Mi
The following	Prep Methods	were p	erformed							
Method	Description	1				Analyst	Date	Time	Prep Batch	
Aut Soit Hep	Ash Soil 19	ep. GL.	RAD-A-	(C) B		LXM2	1.0/02/06	1356	371849	
Dry Sail Prep	Dry Soil Pr	ep OL-	RAD-4	023		7MB1	(99/23/06:	1648	37/848	
The following	Analytical Mer	hods w	ere perfor	franci						
Method	Description									
	ASTM D Z	16 (M)	ided kind (
2	DOF EMIL	HASL	RRi Am-	on-RC Modified						
à.	DOF EMI	HASL	200, Pa-1	1-RC Modifical						
4	DOE EMIL.	HASL	300. Th-0	0-85 Modified						
1	DOEEML	HASL-	100, Th-0	H-RC Modified						
ó.	DOE EML	HASL-	300, Th-0	II-RC Modified						
7	DOF EAL	HASI-	-300, Th→)	H-HC Modified						
1	THUE EMIL	HASE-	-3007, LI-02	-RC Modified						
4	DOE EMIL	HASE-	300, U=02	Z-RC Modified						
111	EMIL HASE	300,4	521							
10	EFA 900.0	Medda	nd.							
12	EPA-900.0	Modifie	d							
D.	E 49060	Modifia	id							
Surrogate/Trac	cer recovery	Test				Recovery's	Accept	able Limits		
Curtimo-244		Alpi	imper Am	341, Selist		81	(155	-1256		
Cariting 3.14		Alph	Augen Aug	145 Selid		81				
Planaman -242 Alphaspec Ptt. Solid.			181	4155	1-123%)					
Carrier Tracer R	CUDYCTE	Alpt	aupec Th.	Solut		7.5	4110	F-(25%)		
Common-117		Alpi	mopos U.S	tolid		90	(754	1-125%)		

Notes

The Qualifiers or this raport are defined as follows:

- A quality cutorol analyte recovery is outside of specified acceptance criteria
- Result is less than value reported
- Result to greater than value reported
- The TIC is a supported alded-condensation product
- B Target analyte was detected in the associated blank.

GENERAL ENGINEERING LABORATORIES, LLC

2040 Savage Road. Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Conpany

Lawrence Livermore Nat's Lair s

Address

7000 Em Avenue

Statistop L-232

Livermore, California 94551

Property.

Ma Defizio Montero CES - Normal Deliverable

Client Sample 1D:

Sample II):

82095 172471004

DL

Prosect Chent ID: LLNL00201 LLNL002

Parameter-

Qualifier

Result

Lineertainty

TPO

RL

Units

DF Analyst Date

Rayson Once October 25, 2006.

Time Batch Mtd

IIII Results are either below the MDC or imper recovery is low

C. Analyte has been confirmed by GC/MS analysis

D. Results are reported from a diluted aliquot of the sample

H Analytical holding time was exceeded

1 Value is estimated

N/A. Spike recovery limits do not apply. Sample concentration exceeds spike or negritation by 4X or more

R Sample results are rejected

U. Analyte was analyzed for, but not descried above the MDL, MDA, or LOD.

UT Gamma Spectroscopy -- Uncertain identification

X. Consult Case Narrative, Data Summury package, or Project Manager concerning this qualifier

Y QC Samples were not spiked with this compound

Z. Paint Fifter Test-Particulors passed through the filter, however no free liquids were observed.

RPD of sample and duplicate evaluated using 4-RL. Concentrations are <5X the RL.

il 5-day BOD- The 2:1 depletion requirement was not met for this sample

h Preparation or preservation holding time was exceeded

The above sample is reported on a day weight basis.

Data Quality Objective Process Form

DQO Number 06-025	Date 9-12-06
	NOTE
Generator/Responsible Individual (person request ONLY)	ing the DQO) fills out STEP 1 and STEP 3. Section 1
used in the treatment of soil vapor contamt DQO is being established to provide addit limit. Specifically data from samples collect the radiological background of unspent G/ package on spent GAC. It should be note been conducted. The most complete radio under SAW 00-025. Samples collected at	orized limits for granular activated carbon (GAC) sinated with volatile organic compounds. This ional radiological data to support the authorized cted under this DQO will be used to 1) establish AC and 2) Provide a current radiological data of that several historical sampling events have ological data set was collected in February, 2001
STEP 2: Identifying Decisions to be Made (comp Which disposal facility is this waste destined for? A Does a profile exist for disposal of this waste? If no, who will be developing the profile?	/es [] Na
Will on title or off-sile applysis be required? off-sile	
STEP 3: Identifying Input (completed by the QA C Section I: General Information: Generator/Respon- Section II: Sampling: Sample Team Section III: Analysis: CES/Analytical Laboratory	
Section I: Input from Generator/Responsible Pe 1 Description of waste (e.g. soil, gravel, lab trash, e.g. 2 Describe process that generated the waste Soil (
3. Waste generation location VTF 5475 soil vapor to 4. Current location of waste n/a 5. Program that generated the waste ERD	realment unit
 Number of containers and sizes of containers n/s 	
7. What is the total volume of this waste in cubic me	elets t/o

Three samples are to be collected

pertinent information

 List requisition numbers and associated container identification (CID) numbers. Attach copies of requisitions, Haz Frack or TVMMS "screen dumps." Previous analytical, associated memos, and any other

8. Is this waster Legocy Waster Mewly Generated Waster Dither (explain)

1) Sample of unspent GAC Activated Corp. Carbon (See Sabre Coleman for sample)

2) Sample of unspent GAC Carbitrol Carbon (see Ben Johnson for sample)

9. Continued									
3) Sample of the spen	I GAC (see Ben Johnson a	nd Nick Bailey	for sample)					
	en previously treated? Ye	es No If ye	s, attach d	acumentation (b	lending pla	371			
processing information									
	ntain any of the following a	nd state how it	is known (VI is visual insp	ection, PK	15			
process knowledge)									
a Grease or Oil		Yes	No No	Unknown	L VI	⊠ PK			
b Hazardous constitus			□ No	Unknown	□ VI	X PK			
	roethylene, chloroform ect								
n Entrapped Liquids		Yes	No	☑ Unknown	1.73	□ PK			
If yes, is the liquid <	0.5% by Volume?	If yes, wh	at is the lic	guid?					
d Particulates?		MYes.	No	Unknown	DV	X PK			
If yes, are the partic	ulates > 1% the size of flour	r or > 15% sam	d (by weigi	ht)? yes					
e. Compressed gases	Yes	No.	Linknown	IVI	⊠ PK				
f. Eticlogical agents		LiYes	⊠ No	Unknown	TIVI	Ø PK			
g. Chelating agents		Yes	IN No	Unknown	TVI	⊠ PK			
	agents <1% by weight?	1	1.14	1 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 best 1	-			
h. FCBs (capacitors, e		Tives	No No	Unknown	TIVI	MPK			
i. Explosives	100	LYes	No No	Unknown	LIVI	⊠ PK			
j. Pyrohparics		Yes	⊠ No.	Unknown	TVI	Ø PK			
k. Asbestos		Yes	⊠ No	Unknown	TVI	⊠ PK			
		171.69	Ed 140	L PRINTIPALI	LIA	PA CIN			
If yes, is it hlable?	dinnuctides present and es	time test sections	for a male						
				s listed below ar	m aummente	ed for him			
☐ Radionuclide conte	III HOKIJUWII	presen		s listed below at	e suspecte	of to be			
Radionuclies	Setwin (Ch)		ictides	- FASJust	ty (Ci)				
	SUCHARIA (CA)	Kaoidairi	ICHOES	ACTIVI	A Leut				
Tritium	33 pCl/gram	_	_		_				
NaHU						_			
		1							
13 How was activity de	The state of the s	1 205							
Alpha Spectrometry		-		Conversion					
☐ Gamma Spectrosco	ру			Measurement					
□ Liquid Scintillation		American Company	Mass Balance						
NUQM Method		HSN							
Other explain					-				
14 Any additional spec	ific guidance from General	or/Responsible	Person [I N/A					
This waste stream has	been characterized under I	GD 0597-0100	-03						
	of anlytical data was collec-								
Section I Completed E	By! (Generator/Responsible	Individual)		STATE .	- AL				
Print Name Robert Fisc	and the second s		n:2-3004						
Signature: 100	Second C	Date Ser	itember 8,	2006					
	100000								

Section It: Sampling (complete Sample Team)	d by the QA Chemist	for Sampling and	Analysis in conjunction with the
1. Person and Organization resp	oneible for expedient	DHIAM Complete	Ten
2 Has the responsible person to		With your periting to	4111
3 Specific Sampling guidance fr		54 M/A	
S. obeiting construit another in	OHI HID GOINGING TEAM	- Mod (An)	
			IA Chemist for Sampling and Arralysis.
in conjunction with CES and the 1. Name and address of the labor			
2 Indicate the reporting level of		L	
If using CES (check one)	me analyticat report	I II onion other a	autotical (akaretean (akaet anu)
Level 1 Results and cas	o normius	CLP Packag	nalytical laboratory: (check one)
S Level 2 Results, case na		Non-CLP Pa	
Level 3 Results, case no		PA WOLLD'LL	mange
additional information des			
3. Specific Analysis Guidance fro		alytical Laborator	V. E. N/A
			ount 4839-85. Please send all data to
Robert Fischer L-620			Polyster Polyster and an annual state
4. The waste will be analyzed by	the following method	5	
TCLP 8250 Volatiles	TCLP Metals		⊠Gamma Spectroscopy
Total 8260 Volatiles	TCLP Metals	extended list	Alpha Spectrometry (TUPA)
B270 Semi-volatiles	TTLC Metals		Con Gamma
☐18082 PCBs	STLC Metals		Gon Alpha (TUPA)
☐ 8015 Alcohols & Ketones	Cyanide (C)	eactive []total)	Gori Alphia (UPA)
Paint Filter Test	Suffide () re:	active [total)	Gross alpha/beta
DH.	[] Ignitability		☑ Tritians
Flash Pomt	LTOX		☐ C-14
FVL Liquetaction Testing, If cl	hecked, CES please !	orward to the FVL	Lab
	metric solids ASTM D	2216 % Moisture	Federal), Include Curium in the alpha
spec TUPAC	Section Cont.		
5 Additional requirements and/or	comments.		
STEP 4: Define the Study Bour	daries (completed by	the CA Chemist t	or Sampling and Applysis)
1. Are there any limitations on wh			
☐ Yes ☒ No If yes miscuss		AATON ROOF TO TOTAL PROPERTY STATE	mis tests believen
The Paris II leaf married			
2. Are there any problems with ac	cossibility of the wast	to? X Yes I No	If yes, discuss:
Need to work with ERD to obta			

STEP 5: Develop the Decision Rules (comple	ted by the QA Chemist for Sampling and Analysis)
	te carry any RCRA or California waste codes? X Yes X No
If yes, list all waste codes spent carbon is	
2. Prior to sampling and analysis, does the wast	e exceed Land Disposal Restrictions (LDR)?
Yes □ No	
If yes, list constituents that exceed LDR. Mul-	tiple F-listed solvents for a complete list see IGD
	WIC 140, Data Quality Objectives Process. List any specific
Decision Rules pertaining to this DQO.	
 Determination of background concentration of 	
 Comparison of radiological data collected in 2 	2001 with that collected under this DQO
STEP 6: Specify Tolerable Limits on the Deci Analysis)	sion Errors (completed by the QA Chemist for Sampling and
	ors are discussed in WIC 140, Data Quality Objections
Process List any specific Tolerable Limits on De	ecision Errors pertaining to this DOO.
There are no specific Tolerable Limits to disc	
The Literature and the address of the state	avp.
STEP 7: Optimize Design for Obtaining Data ((completed by the QA Chemist for Sampling and Analysis).
Containers must be sampled in accordance w	oh
WIC 110 Sampling Solid Waster □ WIC	111 Sampling Liquid Waster
2 Sampling Strategy Collect representive sar	
3 Sampling Frequency and Selection Three in	samples to be collected, 1) Unspent GAC munufactured by
	closed by Carbitrol and 3) spent GAC from licatment process
the best of the state of the st	and the second s
Sampling Methodology. Use standard bulk of	ollection methods
The second secon	*1310411130412
Quality Control	
	ADM 110, Waste Satisting Quality Assurance and Control
Plan Discuss any further QA requirements. §	
Completion of Sampling and Analysis Guidance	Control of the Contro
completed by QA Chemist for Sampling and Ans	alysis)
COUNTY OF CALCULATION OF THE PRINTING AND ADDRESS.	Extension 2-3004
Innt Name: Robert Fischer A	Date September 8, 2006

STEP 8: Data Quality Assessme the analytical data package)	nt (completed by the QA Chemist for Sampling and Analysis after receipt of
1 is the analytical data valid? [])	Yes []No It no, comment.
2 "Data Validation" or "Review of R	Results" Memo Number(s):
3 List any limitations on use of the	analytical data.
4 Does this waste need to be resort	mpled? [] Yes [] No. If yes, comment.
	g and analysis results, does the waste carry any RCRA or California list all waste codes which this waste will carry
	g and analysis results, does the waste exceed Land Disposal Reinfrictions? wents which exceed LDR, \(\subseteq \text{Spreadsheet attached.} \)
Does this waste meet the Waste. If no, discuss what will happen w	Acceptance Guidance for the intended disposal site? Yes No
8. Name the disposal facility where	waste will be sent
3 Enter waste disposal profile num	ber-
10. List Usability Memo Number(s)	
, in the second	The state of the second
DOD/DOA Process Completed (or	ompleted by QA Chemist for Sampling and Analysis)
Print Name:	Extension
Signature	Date

DATA QUALITY OBJECTIVE (DQO) CHANGE FORM

DQO No. 06-025

Section(s) affected:

Section I: #9.

Section III, Step 7, #3.

Description of change:

Section I. #9; list W305993 and W305994 as the spent GAC.

Section III, Step 7, #3; list W305993 and W305994 as the spent GAC to be sampled.

Reason for change:

Identifying the sperit GAC to be sampled

Requested By: Chad Davis

Authorized by: Michael D. Gagel

Date: 09/13/06

WGS 00139, Expiration Date 08/01/09

APPENDIX B

CLEAN HARBORS DEER PARK FACILITY RCRA PERMIT

TABLE OF CONTENTS

PERN	MIT SECTION I-FACILITY DESCRIPTION	4
A.	SIZE AND LOCATION OF SITE	4
B.	INCORPORATED APPLICATION MATERIALS	4
PERN	MIT SECTION II – GENERAL FACILITY STANDARDS	5
A.	STANDARD PERMIT CONDITIONS	5
B.	RECORDKEEPING AND REPORTING REQUIREMENTS	8
C.	INCORPORATED REGULATORY REQUIREMENTS	
PERN	MIT SECTION III – FACILITY MANAGEMENT	14
A.	OPERATION OF FACILITY	
B.	PERSONNEL TRAINING	14
C.	SECURITY	
D.	GENERAL INSPECTION REQUIREMENTS	
E.	CONTINGENCY PLAN	
PERN	MIT SECTION IV – WASTES AND WASTE ANALYSIS	
A.	WASTE ANALYSIS PLAN	
В.	AUTHORIZED WASTES	
C.	SAMPLING AND ANALYTICAL METHODS	
D.	WASTE ANALYSIS AND VERIFICATION	
PERN	MIT SECTION V – AUTHORIZED UNITS AND OPERATIONS	
A.	AUTHORIZED UNITS	
В.	CONTAINER STORAGE AREAS	
C.	TANKS AND TANK SYSTEMS	
D.	SURFACE IMPOUNDMENTS	
E.	WASTE PILES	
F.	LAND TREATMENT UNITS	
G.	LANDFILLS	
Н.	INCINERATORS	
I.	BOILERS	
J.	DRIP PADS	
K.	MISCELLANEOUS UNITS	
L.	CONTAINMENT BUILDINGS	
	MIT SECTION VI – GROUNDWATER DETECTION MONITORING	
	GROUNDWATER MONITORING PROGRAM	
В.	CONSTRUCTION, CERTIFICATION, AND PLUGGING	
C.	DETECTION MONITORING SYSTEM: OPERATION	
D.	SAMPLING AND ANALYSIS	
E.	RESPONSE REQUIREMENTS FOR SSI	
F.	REVISED DETECTION MONITORING PROGRAM	
G.	ANNUAL DETECTION MONITORING REPORTING REQUIREMENTS	
H.	RECORD KEEPING REQUIREMENTS	
	MIT SECTION VII – CLOSURE AND POST - CLOSURE REQUIREMENTS	
A.	FACILITY CLOSURE	
B.	FINANCIAL ASSURANCE FOR CLOSURE	59
C.	STORAGE PROCESSING, COMBUSTION, AND MISCELLANEOUS UNIT CLOSURE	
RE(QUIREMENTS	60

D,	SURFACE IMPOUNDMENT CLOSURE REQUIREMENTS	.60
E.	LANDFILL CLOSURE AND CERTIFICATION REQUIREMENTS	.61
F.	CONTAINMENT BUILDINGS CLOSURE REQUIREMENTS	.63
G.	FACILITY POST-CLOSURE CARE REQUIREMENTS	.63
H.	POST-CLOSURE FINANCIAL ASSURANCE REQUIREMENTS	.66
PERM	IIT SECTION VIII – LIABILITY REQUIREMENTS	
A.	SUDDEN AND NONSUDDEN ACCIDENTAL OCCURRENCES	.67
B.	INCAPACITY OF OWNERS OR OPERATORS, GUARANTORS, OR FINANCIAL	
INS	TITUTIONS	.67
PERM	IIT SECTION IX – CORRECTIVE ACTION FOR SOLID WASTE MANAGEMENT UNITS	67
PERM	IIT SECTION X – AIR EMISSION STANDARDS	67
A.	PROCESS VENTS AND EQUIPMENT LEAKS	.67
PERM	IIT SECTION XI – LIST OF ATTACHMENTS	68
	LE III.D INSPECTION SCHEDULE	
	LE III.E.2 EMERGENCY EQUIPMENT	
	LE IV.B WASTES MANAGED IN PERMITTED UNITS	
TABI	LE IV.C. SAMPLING AND ANALYTICAL METHODS	1
TABLE	E V.B CONTAINER STORAGE AREAS	1
TABLE	E V.C TANKS AND TANK SYSTEMS	1
TABLE	E V.G.1. LANDFILLS	1
TABLE	E V.G.3. LANDFILL LINER SYSTEM	1
TABLE	E V.G.4. LANDFILL LEACHATE COLLECTION SYSTEM	1
	E V.H.1 INCINERATORS	
	E V.H.2(I) TRAIN I INCINERATOR PERMIT CONDITIONS, MONITORING, AND AUTOMATIC WASTE FEED CUTO	
	MS E V.H.2(II) TRAIN II INCINERATOR PERMIT CONDITIONS, MONITORING, AND AUTOMATIC WASTE FEED CUT	
	MS	
	LE V.H.3 – MAXIMUM CONSTITUENT FEED RATES	
	LE V.H.4 – MAXIMUM ALLOWABLE EMISSION RATES	
	V.H.5. – Direct Burn Chemicals	
	LE V.K MISCELLANEOUS UNITS	
	LE VI.B.3.b UNIT GROUNDWATER DETECTION MONITORING SYSTEM	
	ABLE VI.B.3.c GROUNDWATER SAMPLE ANALYSIS	
	ABLE VII.E.1 PERMITTED UNIT CLOSURE COST SUMMARY	
	ARI E VII G POST-CI OSURE PERIOD	1

PERMIT SECTION I-FACILITY DESCRIPTION

A. SIZE AND LOCATION OF SITE

A permit is issued to Clean Harbors Deer Park, LP, (hereafter called the permittee), to operate a hazardous waste processing, storage, and disposal facility located at 2027 Battleground Road, in Harris County, Texas, drainage area of Segment 1006 of San Jacinto River Basin (North Latitude 29° 43′ 35", West Longitude 95° 05′ 40"). The legal description of the facility submitted in permit No. 50089 application dated September 15, 1997 is hereby made a part of this permit as "Attachment A". The hazardous waste management facility as delineated by the permittee's application map is hereby made a part of this permit as Attachment B".

B. INCORPORATED APPLICATION MATERIALS

This permit is based on, and the permittee shall follow the Part A and Part B Industrial and Hazardous Waste Application elements listed in "Attachment C", and provided in the table below, which are hereby approved subject to the terms of this permit and any other orders of the TCEQ. These materials are incorporated into this permit by reference as if fully set out herein. Any and all revisions to these elements shall become conditions of this permit upon the date of approval by the Commission.

Date	Submittal
9/15/97	Permit renewal application and trial burn/risk burn plans
12/31/97	Trial burn/risk burn plans revisions
1/7/98	Permit renewal application administrative notice of deficiency response to TCEQ 12/2/97 letter
3/11/98	Permit renewal application administrative notice of deficiency response to TCEQ 2/6/98 letter
6/3/98	Trial burn/risk burn plans revisions
8/31/98	Trial burn/risk reports
10/19/98	Trial burn/risk reports
1/31/00	Trial burn/risk reports notice of deficiency response
2/3/00	Trial burn/risk reports notice of deficiency response
05/1/00	Trial burn/risk reports notice of deficiency response
1/21/01	Permit renewal application notice of deficiency response
8/20/01	Permit renewal application notice of deficiency response

[I.B.]

Date	Submittal
11/15/01	Landfill information
2/11/02	Permit modifications update
5/24/02	Risk Assessment information
9/6/02	Initial draft permit supplemental information
9/24/02	North Landfill expansion update
11/5/02	Bin storage risk assessment information
10/27/03	Tank Assessment Clarification
1/29/04	Supplement to RCRA Part B Permit Application – Bulk Feed System
1/29/04	MACT compliance revisions
3/24/04	Addition of PCB's to bin Storage Areas 1, 2, and 3
6/16/04	Revised maximum allowable stack gas flow rates
10/22/04	Addition of North Pump Pad as Miscellaneous Unit
11/1/04	Control of fugitive emissions from Incinerator Trains I and II
3/4/05	Revisions to Contingency Plan
3/25/05	Addition of pipeline to transfer waste directly from containers to existing port X-102
8/1/05	Addition of newly listed waste code K181
8/3/05	Addition of new tank T-33 and update of Closure and Post-Closure Cost summaries to 2004 dollars
12/15/05	Expansion of definition of auxiliary fuel

PERMIT SECTION II - GENERAL FACILITY STANDARDS

A. <u>STANDARD PERMIT CONDITIONS</u>

The permittee has a duty to comply with the Standard Permit Conditions under 30 TAC Section 305.125. Moreover, the permittee has a duty to comply with the following permit conditions:

1. Modification of Permitted Facilities

The facility units and operational methods authorized are limited to those described herein and by the application submittals identified in <u>Provision I.B.</u> (Incorporated Application Materials). All facility units and operational methods are subject to the terms and conditions of this permit and TCEQ rules. Prior to constructing or operating any facility units in a manner which differs from either the related plans and specifications contained in the permit application or the limitations, terms or conditions of this permit, the permittee must comply with the TCEQ permit amendment/modification rules as provided in 30 TAC Sections 305.62 and 305.69.

2. <u>Duty to Comply</u>

[30 TAC Section 305.142] The permittee must comply with all the conditions of this permit, except that the permittee need not comply with the conditions of this permit to the extent and for the duration such noncompliance is authorized in an emergency ordered issued by the Commission. Any permit noncompliance, other than noncompliance authorized by an emergency order, constitutes a violation of RCRA and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.

[II.A.]

3. <u>Severability</u>

The provisions of this permit are severable, and if any provisions of this permit or the application of any provisions of this permit to any circumstance, is held invalid, the application of such provision to other circumstance, and the remainder of this permit shall not be affected thereby.

4. Definitions

For purposes of this permit, terms used herein shall have the same meaning as those in 30 TAC Chapters 305, 335 and 350 unless this permit specifically provides otherwise; where terms are not defined in the regulations or the permit, the meaning associated with such terms shall be defined by a standard dictionary reference or the generally accepted scientific or industrial meaning of the term.

Application data – data used to complete the final application and any supplemental information.

5. <u>Permit Expiration</u>

In order to continue a permitted activity after the expiration date of the permit the permittee shall submit a new permit application at least 180 days before the expiration date of the effective permit, unless permission for a later date has been granted by the Executive Director. Authorization to continue such activity will terminate upon the effective denial of said application.

6. Certification Requirements

[30 TAC Section 305.144] For a new facility, the permittee may not commence storage, processing, or disposal of solid waste; and for a facility being modified, the permittee may not process, store or dispose of solid waste in the modified portion of the facility, except as provided in 30 TAC Section 305.69 (relating to Solid Waste Permit Modification at the Request of the Permittee) until the following has been accomplished:

a. The permittee has submitted to the Executive Director and the local Regional Office of the TCEQ, by certified mail or hand delivery, a letter signed by the permittee, and signed and sealed by a Texas Licensed Professional Engineer stating that the facility has been constructed or modified in compliance with the permit. If the certification is being provided to document proper closure of a permitted unit, or to certify installation or repair of a tank system, then the certification must be signed and sealed by an independent Texas Licensed Professional Engineer. Required certification shall be in the following form:

[II.A.6.a.]

"This is to certify that the following activity (Specify activity, e.g., construction, installation, closure, etc., of an item) relating to the following item, (Specify the item, e.g., the particular facility, facility unit, unit component, subcomponent part, or ancillary component), authorized or required by TCEQ Permit No. 50089, has been completed, and that construction of said facility component has been performed in accordance with and in compliance with good engineering practices and the design and construction specifications of Permit No. 50089."

- b. A certification report has been submitted, with the certification described in <u>Provision II.A.6.</u>, which is logically organized and describes in detail the tests, inspections, and measurements performed, their results, and all other bases for the conclusion that the facility unit, unit component, and/or closure have been constructed, installed and/or performed in conformance with the design and construction specifications of this permit and in compliance with this permit. The report shall describe each activity as it relates to each facility unit or component being certified including reference to all applicable permit provision. The report shall contain the following items, at a minimum:
 - (1) Scaled, as-built plan-view and cross-sectional drawings which accurately depict the facility unit and all unit components and subcomponents and which demonstrate compliance with the design and construction specifications approved and detailed in the terms of this permit;
 - (2) All necessary references to dimensions, elevations, slopes, construction materials, thickness and equipment; and
 - (3) For all drawings and specifications, the date, signature, and seal of a Professional Engineer who is Licensed in the State of Texas.
- c. The Executive Director has inspected the modified or newly constructed facility and finds it is in compliance with the conditions of the permit; or if within 15 days of submission of the letter required by paragraph (a) of this section, the permittee has not received notice from the Executive Director of the intent to inspect, prior inspection is waived and the permittee may commence processing, storage, or disposal of solid waste.

* 7. <u>Land Disposal Restrictions</u>

The permittee shall comply with the land disposal restrictions as found in 40 CFR 268 and any subsequent applicable requirements promulgated through the Federal Register. Requirements include modifying/amending the permittee's waste analysis plan to include analyses to determine compliance with applicable treatment standards or prohibition levels, pursuant to 40 CFR 268.7(c) and 264.13(a).

[II.A.]

8. Dust Suppression

Pursuant to 40 CFR 266.23(b)/30 TAC Section 335.214(b), the permittee shall not use waste, used oil, or any other material which is contaminated with dioxin, polychlorinated biphenyls (PCBs), or any other hazardous waste (other than a waste identified solely on the basis of ignitability) for dust suppression or road treatment.

9. <u>Permit Reopener</u>

This permit shall be subject to review by the Executive Director five (5) years from the date of permit issuance or reissuance and shall be modified as necessary to assure that the facility continues to comply with currently applicable requirements for the Solid Waste Disposal Act (SWDA) and the rules and regulations of the Commission. The permittee shall submit any information as may be reasonably required by the Executive Director to ascertain whether the facility continues to comply with currently applicable requirements of the SWDA and the rules and regulations of the Commission.

10. Texas Coastal Management Program

The TCEQ has reviewed the permit application for consistency with the goals and policies of the Texas Coastal Management Program (CMP) in accordance with the regulations of the Coastal Coordination Council (CCC) and has determined that the permit is consistent with the applicable CMP goals and policies. [30 TAC Section 281.43 (a)(1)]

11. Monitoring of Commercial Hazardous Waste Management Facility Operations

Within the first year after Commission action on this permit, the permittee shall provide notice to affected persons of the intent to have an independent annual environmental audit of the facility performed. The notice shall be issued in accordance with the requirements of 30 TAC Section 305.147(1). If an affected party requests the audit, then the permittee must follow the requirements of 30 TAC Section 305.147(2)-(6), and (8), for selecting an independent inspector, paying for the notice and audit, submission of a written report, and determining the scope of the inspection.

B. RECORDKEEPING AND REPORTING REQUIREMENTS

1. Monitoring and Records

a. All data submitted to the TCEQ shall be in a manner consistent with the latest version of the Quality Assurance Project Plan for the Texas Commission on Environmental Quality for Environmental Monitoring and Measurement Activities Relating to the Resource Conservation and Recovery Act (TCEQ QAPP).

[II.B.1.]

- b. [30 TAC Section 305.125(11)(A)] Monitoring samples and measurements shall be taken at times and in a manner so as to be representative of the monitored activity. The method used to obtain a representative sample of the material to be analyzed shall be the appropriate method form Appendix I of 40 CFR Part 261 or an equivalent method approved by the Executive Director of the TCEQ. Laboratory methods shall be those specified in *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*, SW-846, 1987, as revised; *Standard Methods for the Examination of Water and Wastewater, Fifteenth Edition, 1980, and 1981 supplement, or current adopted edition; RCRA Ground-Water Monitoring: Draft Technical Guidance, 1992*, OSWER Directive 9950.1, *American Society for Testing and Material (ASTM), EPA Methods For Chemical Analysis of Water and Wastes*, or an equivalent method, as specified in the Waste Analysis Plan, Section IV of the Part B Application, and as approved by the Executive Director.
- c. [30 TAC Section 305.125(11)(B)] The permittee shall retain in an organized fashion and furnish to the Executive Director, upon request, records of all monitoring information, copies of all reports and records required by this permit, and the certification required by 40 CFR 264.73(b)(9), for a period of at least 3 years from the date of the sample, measurement, report, record, certification, or application.
- d. [30 TAC Section 305.125(11)(C)] Records of monitoring shall include the following:
 - (1) The date, time, and place of sample or measurement;
 - (2) The identity of individual who collected the sample or measurement;
 - (3) The dates analyses were performed;
 - (4) The identity of individual and laboratory who performed the analyses;
 - (5) The analytical techniques or methods used; and
 - (6) The results of such analyses or measurements.

2. Operating Record

In addition to the recordkeeping and reporting requirements specified elsewhere in this permit, the permittee shall maintain a written operating record at the facility, in accordance with 40 CFR 264.73. These records will be made available to representatives of the TCEQ upon request.

[II.B.]

3. Retention of Application Data

[30 TAC Section 305.47] A permittee shall keep records throughout the term of the permit of data used to complete the final application and any supplemental information. All copies of renewals, amendments, revisions and modifications must also be kept at the facility such that the most current documents are available for inspection at all times. All materials, including any related information, submitted to complete the application shall be retained, not just those materials which have been incorporated into the permit.

4. Reporting of Noncompliance

The permittee shall report to the Executive Director of the TCEQ information regarding any noncompliance which may endanger human health or the environment. [30 TAC Section 305.125(9)]

- a. Report of such information shall be provided orally within 24 hours from the time the permittee becomes aware of the noncompliance.
- b. A written submission of such information shall also be provided within five days of the time the permittee becomes aware of the noncompliance. The written submission shall contain the following:
 - (1) a description of the noncompliance and its cause;
 - (2) the potential danger to human health or safety, or the environment;
 - (3) the period of noncompliance, including exact dates and times;
 - (4) if the noncompliance has not been corrected, the anticipated time it is expected to continue; and
 - (5) steps taken or planned to reduce, eliminate, and prevent the recurrence of the noncompliance, and to mitigate its adverse effects.

5. Twenty-Four Hour Reporting

The following shall be included as information which must be reported orally within 24 hours pursuant to Title 30 TAC Section 305.125(9): [30 TAC Section 305.145]

- a. Information concerning release of any solid waste that may cause an endangerment to public drinking water supplies;
- b. Any information of a release or discharge of solid waste, or of a fire or explosion which could threaten the environment or human health or safety, outside the facility. The description of the occurrence and its cause shall include:

[II.B.5.b.]

- (1) name, address, and telephone number of the owner or operator;
- (2) name, address, and telephone number of the facility;
- (3) date, time and type of incident;
- (4) name and quantity of material(s) involved;
- (5) the extent of injuries, if any;
- (6) an assessment of actual or potential hazards to the environment and human health or safety outside the facility, where this is applicable; and
- (7) estimated quantity and disposition of recovered material that resulted from the incident.

6. Notice Waiver

[30 TAC Section 305.145(b)] The Executive Director may waive the five-day written notice requirement specified in <u>Provision II.B.4.b</u> (Reporting of Noncompliance) in favor of a written report submitted to the Commission within 15 days of the time the permittee becomes aware of the noncompliance or condition.

7. <u>Biennial Report</u>

The permittee shall prepare and submit to the Executive Director a Biennial Report. One copy of the report shall be submitted to the TCEQ Industrial and Hazardous Waste Permits Section and an additional copy shall be submitted to the appropriate TCEQ Regional Office by March 1st of each even-numbered year for the preceding odd-numbered year's activities. This report shall include, at a minimum, all information and records required by 40 CFR 264.75.

8. Pollution Prevention

Facilities subject to 30 TAC Chapter 335, Subchapter Q – Pollution Prevention: Source Reduction and Waste Minimization, must prepare a five year Source Reduction and Waste Minimization Plan and submit a Source Reduction and Waste Minimization Annual Report (SR/WM Annual Report) to the TCEQ Small Business and Environmental Assistance Division. This report must be submitted annually on the dates specified in the rule.

9. Waste Minimization

The permittee shall annually certify, by January 25th for the previous calendar year, the following information, [40 CFR 264.73(b)(9):

Permit No. 50089 Clean Harbors Deer Park, LP

[II.B.9.]

- a. that the permittee has a program in place to reduce the volume and toxicity of all hazardous wastes which are generated by the permittee's facility operation to the degree determined to be economically practicable; and
- b. that the proposed method of treatment, storage, or disposal is that practicable method currently available to the permittee which minimizes the present and future threat to human health and the environment. This waste minimization certification is to be included in the facility operating records until closure.

10. Annual Detection Monitoring Report

The permittee shall submit an Annual Detection Monitoring Report as required by <u>Provision VI.G.</u> March 1st of each year.

11. <u>Manifest Discrepancy Report</u>

If a significant discrepancy in a manifest is discovered, the permittee must attempt to reconcile the discrepancy. If not resolved within fifteen days, the permittee must submit a report, describing the incident, the Executive Director, as per the requirements of 30 TAC Section 335.12(c)(2). A copy of the manifest must be included in the report.

12. Unmanifested Waste Report

A report must be submitted to the Executive Director within 15 days of receipt of unmanifested waste, as per the requirements of 30 TAC Section 335.15(3).

13. Monthly Summary

[30 TAC Section 335.15(2)] The permittee shall prepare a monthly report, of all manifests received during the month, summarizing the quantity, character, transporter identity, and the method of storage, processing and disposal of each hazardous waste or Class 1 waste shipment received, itemized by manifest document number. This monthly summary report shall be submitted to the TCEQ Waste Evaluation Registration and Reporting Section on or before the 25th day of each month for waste received during the previous month.

C. INCORPORATED REGULATORY REQUIREMENTS

1. State Regulations

The following TCEQ regulations are hereby made provision and of conditions of this permit. Issuance of this permit with incorporated rules in no way exempts the permittee from compliance with any other applicable state statute and/or Commission Rule.

- a. 30 TAC Chapter 37, Subchapter P;
- b. 30 TAC Chapter 305, Subchapter A: General Provisions;

[II.C.1.]

- c. 30 TAC Chapter 305, Subchapter C: Application for Permit;
- d. 30 TAC Sections 305.61 305.69 (regarding amendments, renewals, transfers, corrections, revocation and suspension of permits);
- e. 30 TAC Sections 305.121 305.125 (regarding permit characteristics and conditions);
- f. 30 TAC Sections 305.127 305.129 (regarding permit conditions, signatories and variance procedures);
- g. 30 TAC Chapter 305, Subchapter G: Additional Conditions for Hazardous and Industrial Solid Waste Storage, Processing and Disposal Permits;
- h. 30 TAC Chapter 305, Subchapter I: Hazardous Waste Incinerator Permits;
- i. 30 TAC Chapter 335, Subchapter A;
- j. 30 TAC Chapter 335, Subchapter B;
- k. 30 TAC Section 335.152 33.167;
- 1. 30 TAC Sections 335.173 335.179;
- m. 30 TAC Chapter 335, Subchapter Q; and
- n. 30 TAC Chapter 350.

2. Federal Regulations

To the extent applicable to the activities authorized by this permit, the following provisions of 40 CFR Part 264 and Subpart 268, adopted by reference by 30 TAC Section 335.152 and 335 Subchapter O are hereby made provisions and conditions of this permit, to the extent consistent with the Texas Solid Waste Disposal Act, Texas Health and Safety Code Ann., Chapter 361 (Vernon), and the rules of the TCEO:

- a. Subpart B General Facility Standards;
- b. Subpart C Preparedness and Prevention;
- c. Subpart D Contingency Plan and Emergency Procedures;
- d. Subpart E Manifest System, Recordkeeping, and Reporting;
- e. Subpart G Closure and Post-closure;

[II.C.2.]

- f. Subpart H Financial Requirements;
- g. Subpart I Use and Management of Containers;
- h. Subpart J Tank Systems;
- i. Subpart N Landfills;
- j. Subpart O Incinerators;
- k. Subpart X Miscellaneous Units;
- 1. Subpart AA Air Emission Standards for Process Vents;
- m. Subpart BB Air Emission Standards for Equipment Leaks;
- n. Subpart CC Air Emission Standards for Tanks, Surface Impoundments, and Containers;
- o. 40 CFR Part 268 Land Disposal Restrictions.

PERMIT SECTION III – FACILITY MANAGEMENT

A. <u>OPERATION OF FACILITY</u>

The permittee shall construct, maintain, and operate the facility to minimize the possibility of a fire, explosion, or any unplanned, sudden or non-sudden release of hazardous waste constituents to air, soil, or surface water which could threaten human health or the environment, as required by 40 CFR 264.31. All equipment and structures used to manage hazardous waste at the facility shall be maintained in proper operating condition.

B. <u>PERSONNEL</u> TRAINING

The permittee shall ensure that all facility personnel involved with hazardous waste management successfully complete a training program as required by 40 CFR 264.16. The permittee shall maintain training documents and records, as required by 40 CFR 264.16(d) and (e).

C. SECURITY

1. The permittee shall provide a 24-hour surveillance system which continuously monitors and controls entry onto the active portion of the facility; or an artificial or natural barrier which completely surrounds the active waste management portion(s) of the facility and shall have a means to control entry, at all times, through gates or other entrances to these same facility areas.

[III.C.]

2. The permittee shall post warning signs at all points of access to the active waste management portion(s) of the facility and along the natural and/or artificial barriers in sufficient numbers to be seen from any approach to that (those) portion(s) of the facility. The signs shall be printed so that they may be clearly read from a distance of at least 25 feet, and shall state "Danger – Unauthorized Personnel Keep Out" in English.

D. GENERAL INSPECTION REQUIREMENTS

The permittee shall follow the inspection schedule contained in the permit application submittals identified in <u>Provision I.B.</u> (Incorporated Application Material) and as set out in <u>Table III.D.</u> <u>Inspection Schedule</u>. The permittee shall remedy any deterioration or malfunction discovered by an inspection, as required by 40 CFR 264.15(c). Records of inspection shall be kept, as required by 40 CFR 264.15(d). Any remedial actions taken in response to facility inspections and the date of the remediation shall be included in the inspection records.

E. CONTINGENCY PLAN

- 1. The permittee shall follow the Contingency Plan, developed in accordance with 40 CFR Part 264 Subpart D, and contained in the permit application submittals identified in <u>Provision I.B.</u> (Incorporated Application Material). Copies of this plan shall be available to all employees involved in waste management at the facility.
- 2. The permittee shall immediately initiate clean-up procedures for removal of any spilled hazardous or industrial nonhazardous wastes and waste residues and shall take all steps necessary to prevent surface-water or groundwater contamination as a result of any spills.
- 3. Collected hazardous or industrial nonhazardous wastes, spills, leaks, clean-up residues, and contaminated rainfall runoff, including contaminated stormwater from the drainage control system(s) associated with the permitted units, shall be removed promptly after the spillage and/or rainfall event in as timely a manner as is necessary to prevent overflow of the system by the following method(s):
 - a. Removal to an on-site authorized facility unit;
 - b. Removal to an authorized industrial solid waste management facility or authorized offsite facility; or
 - c. Discharge in accordance with a wastewater discharge permit.
- 4. The permittee shall ensure that any equipment or vehicles which have come in contact with waste in the loading/unloading, storage, processing, and/or disposal areas have been decontaminated prior to their movement into designated uncontaminated areas of the site property. At a minimum, all contaminated equipment shall be externally decontaminated and contaminated vehicles shall have their undercarriages and tires or tracks decontaminated to remove all waste residues and to prevent contamination of uncontaminated areas. All wash water generated shall be collected and disposed of in accordance with Provision III.E.3..

[III.E.]

5. Preparedness and Prevention

- a. At a minimum, the permittee shall equip the facility as set forth in <u>Table III.E.2 Emergency Equipment</u>, as required by 40 CFR 264.32.
- b. All sumps, pumps, fire- and spill-control equipment, decontamination equipment, and all other equipment and structures authorized or required through the Contingency Plan shall be tested and maintained, as necessary, to assure its proper operation in time of emergency, as required by 40 CFR 264.33.
- c. The permittee shall maintain access to the communications or alarm system, as required by 40 CFR 264.34.
- d. A trained emergency coordinator shall be available at all times in case of an emergency and will have the responsibility for coordinating all emergency response measures as required by 40 CFR 264.55 and 264.56. Emergency number(s) shall be posted in all waste management portions of the facility and all employees in those areas shall be trained in the location of those postings.

PERMIT SECTION IV – WASTES AND WASTE ANALYSIS

A. WASTE ANALYSIS PLAN

The permittee shall follow the Waste Analysis Plan, developed in accordance with 40 CFR 264.13 and the permit application identified in <u>Provision I.B.</u> (Incorporated Application Material).

B. AUTHORIZED WASTES

1. The permittee is authorized to manage hazardous and non-hazardous industrial solid wastes listed in <u>Table IV.B. – Wastes Managed in Permitted Units</u>, subject to the limitations provided herein.

Waste authorized for storage, processing, and disposal include those generated from facility sources and from off-site sources.

2. Hazardous Waste Received From Off-Site Sources

When the permittee is to receive hazardous or nonhazardous waste from an off-site source (except where the permittee is also the generator), the permittee shall inform the generator in writing that the permittee has the appropriate permits and will accept the waste the generator is shipping. The permittee shall keep a copy of this written notice as part of the operating record. [40 CFR 264.12(b)]

[IV.B.]

- 3. The wastes authorized in <u>Table IV.B.</u> shall not contain any of the following:
 - a. Polychlorinated biphenyls (PCBs), as defined by the EPA in regulations issued pursuant to the Toxic Substances Control Act under Title 40 Code of Federal Regulations (CFR) Part 761, unless the permittee is complaint with the federal requirements for PCB storage and processing as specified in 40 CFR Part 761;
 - b. Radioactive wastes unless the permittee is authorized to store, process and dispose of these wastes in compliance with specific licensing and permitting requirements under Chapter 401 of the Texas Health and Safety Code and the rules of the Texas Commission on Environmental Quality or Texas Department of Health or Texas Railroad Commission, and/or any other rules of state or federal authorities;
 - c. Explosive material, as defined by the Department of Transportation under 49 CFR Part 173;
 - d. Dioxin-containing wastes, identified by EPA as F020, F021, F022, F023, F026, and F027 wastes in 40 CFR 261.31, except for storage only in authorized units;
 - e. Municipal garbage;
 - f. Special Waste from Health-Care Related Facilities subject to 25 TAC Chapter 1 and TAC Chapter 330 (except when processed immediately in Permit Units No. 03 or 04 only);
 - g. Pyrophorics (except when processed immediately in Permit Units No. 03 or 04 only;
 - h. Cyanide or sulfide compounds with ten (10) percent or greater concentrations of CN or S (except in lab packs, compressed cylinders, and liquid storage containers); or
 - i. Liquid organic peroxides (except when stored for a period up to 14 calendar days in Permit Unit No. 77, as described in the application, or processed immediately in Permit Units No. 03 or 04 only);
- 4. Prior to accepting any additional wastes not authorized in <u>Table IV.B</u>, the permittee shall follow the permit amendment or modification requirements listed in 30 TAC Section 305.62 and 305.69.
- 5. The permittee may store wastes restricted under 40 CFR Part 268 solely for the purpose of accumulating quantities necessary to facilitate proper recovery, treatment, or disposal provided that it meets the requirements of 40 CFR 268.50(a)(2) including, but not limited to the following:
 - a. Clearly marking each container to identify its contents and the date each period of accumulation begins;

[IV.B.5.]

b. Clearly marking each tank with a description of its contents, the quantity of each hazardous waste received, and the date each period of accumulation begins, or such information for each tank is recorded and maintained in the operating record at that facility.

C. SAMPLING AND ANALYTICAL METHODS

- 1. <u>Table IV.C. Sampling and Analytical Methods</u>, shall be used in conjunction with the Waste Analysis Plan referenced in <u>Provision IV.A.</u>, in performing all waste analyses.
- 2. The permittee shall ensure that all waste analyses utilized for waste identification or verification have been performed in accordance with methods specified in the current editions of "Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods", (SW-846), ASTM or other methods as specified in the Waste Analysis Plan. The permittee shall have a QA/QC program that is consistent with EPA SW 846 and the TCEQ RCRA QAPP.
- 3. The permittee shall not place liquid or waste containing free liquids, whether or not sorbents have been added (except lab waste in overpacked containers), in landfill cells. "Free liquids" are liquids which readily separate from the solid portion of a waste when the waste mixture is at a temperature above 32°F and ambient pressure.
- 4. An absorbent is defined as a material that is capable of physically holding a liquid within pores or interstices by such physical forces as tension or capillary action. An absorbent is defined as a material that is capable of physically adhering a liquid to its (the material's) surface(s) through molecular polar forces. The terms "absorbent" and "adsorbent" shall both be indicated whenever the term "sorbent" is used in this permit.
- 5. The permittee shall test a sufficient number of representative waste samples to assure that free liquids are not placed in the landfill. Process knowledge and/or existing waste sampling and analysis data may be substituted for testing, in accordance with the procedures in the Waste Analysis Plan, if the process generating the waste has not changed. Bulk and containerized hazardous wastes for which it is not obviously clear that the waste does contain free liquids shall be tested for free liquids at a minimum rate of one (1) test per 25 tons of waste or one (1) test per waste as identified by TCEQ Waste Classification Code Number, whichever yields a greater number of analyses. All testing for free liquids shall be according to Test Method 9095 (Paint Filter Liquids Test) as a described in Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (EPA Publication No. SW-846).
- 6. If the sampling required in <u>Provision IV.C.5.</u> indicates that a waste contains free liquids, the waste should be treated prior to landfilling using a treatment technology that does not solely involve the use of a material that functions primarily as a sorbent. In order to verify that chemical stabilization has taken place (i.e., if there are any concerns that "stabilization" is occurring primarily due to the addition of sorbents), a representative sample of the treated waste should be collected from each batch of solidified and/or stabilized waste. Each sample shall be tested by an appropriate procedure as described in <u>Provisions IV.C.7.-9.</u>, in order to verify that chemical stabilization has taken place.

[IV.C.7]

- 7. For chemical stabilization process based solely in a pozzolanic reaction between the aqueous portion of a waste and an appropriate admix ration of calcium hydroxide (e.g., lime) and silicates (e.g., fly ash), an unconfined compressive strength test shall be used to verify successful stabilization. Each sample taken in accordance with <u>Provision IV.C.6.</u> shall be prepared into a remolded specimen as described in Section 4.3 of ASTM Test Method D-2166. After curing of not less than 24 hours and not more than 7 days, the unconfined compressive strength of a specimen (Specimen 2) shall be determined by D-2166.
- 8. A minimum of 3 samples per month collected in accordance with Provision IV.C.6 shall be analyzed for the primary contaminant(s) which are to be stabilized for a minimum period of one year from the date of issuance of this permit. Upon direction by the Executive Director the sampling and analysis requirements of this provision shall be extended for no more than one additional year. The permittee shall notify the local District Office of the TCEQ at least 10 days prior to obtaining each sample in order to allow TCEQ input into which waste streams are sampled. The Toxicity Characteristic Leaching Procedure (TCLP) (as published in 40 CFR 268, Appendix I) shall be used to determine the fraction of contaminant which is extracted. Acetic acid shall not be required to be added to the leaching medium. The data collected by the activities required by Provisions IV.C.7 and 8., and any data characterizing the waste prior to stabilization shall be included in a bound report which shall be provided to the TCEQ. The report shall include an evaluation of the data and include an assessment of the effectiveness of the stabilization process of the tested samples and waste. The report shall be updated to include an assess all available data on a semi-annual basis.
- 9. If stabilized hazardous waste has been tested in accordance with <u>Provision IV..C.7.</u>, then the waste shall not be landfilled unless the compressive strength of Specimen 2 is at least 25% greater than Specimen 1. At a minimum, the compressive strength of Specimen 2 shall be at least 50 psi. If hazardous waste tested in accordance with <u>Provision IV.C.7.</u> does not attain the required unconfined compressive strength (50 psi) or the required increase in strength then the waste shall not be landfilled if greater than ten (10) percent (by mass) of the organic constituents in the liquid portion of the unstabilized waste is extracted in the TCLP leaching medium.
- Once it has been demonstrated in accordance with <u>Provision IV.C.9</u>. that a particular stabilization process used for a particular waste will result in a treated product that passes the unconfined compressive strength test or TCLP leaching procedure (as applicable), then samples of each batch are only required to pass the Paint Filter Liquids Test prior to placement in the landfill. If there are any changes in the treatment process (e.g., admix ratios and stabilization material composition) and/or composition of the waste to be treated, stabilization testing shall be repeated.

[IV.C]

- 11. All semi-solid waste (waste which passes the free liquids test specified in <u>Provision IV.C.5.</u> but which has a liquid component greater than 30 percent) shall be solidified with an appropriate inorganic absorbent before placement into the landfill so that the liquids are not released from the solidified waste subjected to the maximum overburden pressure expected in the landfill cell.
- 12. Prior to first receipt of Land Disposal Restricted (LDR) wastes stabilized off-site or wastes which do not require stabilization or treatment on-site, the permittee shall perform corroborative sampling and analysis on those wastes for all applicable LDR constituents in accordance with 40 CFR Part 268. In lieu of corroborative sampling and analysis, the generator may provide a certification, including analytical results, to the permittee verifying the waste meets all applicable LDR standards. Such analysis by the permittee of certification by the generator shall be repeated annually. Additionally, a minimum of 10% of the waste streams received during each calendar year shall be randomly sampled and analyzed for all LDR constituents applicable to that waste stream in accordance with 40 CFR Part 268. Records shall be maintained demonstrating compliance with the above requirements and shall be kept on site and available for review by TCEQ representatives. Compliance with this provision does not, in any manner, relieve the permittee of the responsibility to ensure that all wastes subject to LDRs meet all LDR requirements prior to disposal.
- 13. Subject to the terms and conditions of this Permit, the Permittee shall only store, process, or dispose of wastes, including but not limited to "Sample Exemption" waste identified in Section 3.2.2.2 of the Waste Analysis Plan, that are fully characterized to meet all limitations contained in the Permit. Records of the waste characterization information shall be maintained at the facility in accordance with 40 CFR 264.73.

D. WASTE ANALYSIS AND VERIFICATION

Except for waste contained in "lab-packs", waste from small quantity generators, and waste which is excepted for sampling and analysis by the Waste Analysis Plan, each waste stream of hazardous waste material shall be sampled and analyzed according to <u>Provisions IV.D.1.-5.</u> prior to approval for land disposal at the facility, except as provided in <u>Provision IV.D..7.</u>, below. The permittee shall certify that the sampling and analysis of the waste material is performed according to the procedures specified below. A written proposed description of any deviation from the sampling or analytical procedures specified in this permit condition shall be presented to the Executive Director of the TCEQ. The Executive Director must approve the alternate method of sampling or analysis before it is implemented. Land disposal units subject to these requirements include the North Landfill.

1. Prior to agreeing to accept a stream of waste material from off-site sources, including containerized material, for land disposal, a representative sample of the waste stream shall be taken and quantitatively analyzed by a laboratory in accordance with methods specified in EPA Publication SW-846, "Testing Methods for Evaluating Solid Waste, Physical/Chemical Methods" and according to a strict quality control and quality assurance program as specified in SW-846 referenced above. A quantitative analysis of the waste material shall be performed such that the specific volatile and semi-volatile organic chemical compounds present in concentrations greater than one percent by weight of the

[IV.D.1]

total waste stream, or the concentration of the total organic carbon, if no single compound is expected to be greater than one percent, shall be identified. If process knowledge indicates the presence of waste constituents listed in "Attachment G" in concentrations of less than one percent, these must also be identified in the waste data sheets supplied by the generator. This analysis shall include the identification of specific potential air contaminants and their concentrations in the waste. In addition, headspace analysis or organic screening analysis of a representative sample of waste in the form destined for land disposal shall be done according to Provision IV.D.10. below.

- 2. The waste stream shall not be accepted for disposal in a land disposal unit if it is found to contain greater than the allowable percentage by weight of any substance found in the list of acceptable wastes as provided for in "Attachment G", except as provided for in <u>Provision IV.D.8.</u>.
- 3. For the purposes of this permit "allowable percentage by weight" will be based on a correlation of actual percentage by weight in the waste to the concentration determined by head space analysis or organic screening analysis described in Provision IV.D.10. This correlation will be developed after permit issuance for each constituent identified in a waste stream during preacceptance analysis described in Provision IV.D.1..
- 4. If a waste stream which contains constituents identified in "Attachment G" that has been accepted for direct land disposal is 1) frequently received from the same generator and 2) if its composition will not vary significantly between shipments, then the waste stream shall be sampled for head space analysis or organic screening analysis in a random manner according to the procedures specified in Provision IV.D.10. All waste streams described in this Provision (IV.D.4.) must be analyzed at a minimum, once per year in accordance with Provision IV.D.1. and must meet the requirements of Provision IV.D.2...
- 5. For waste stabilized in the mixing facility, verification analysis of the head space or organic screening analysis will be required only on the stabilized batch of waste. Verification analysis will be conducted on every fifth load of stabilized waste destined for the landfill. The concentration of potential contaminants detected during head space analysis or organic screening analysis on these samples must comply with the requirements of <u>Provision IV.D.2.</u>.
- 6. If the requirements of <u>Provision IV.D.2.</u> are not met, the stabilized waste materials must be containerized or remixed and sampled to verify compliance with <u>Provision IV.D.2.</u>, prior to placement in the landfill cell.
- 7. For random loads of waste accepted from off-site sources destined for direct landfill and stabilized waste for landfill, the applicant shall take a representative sample of the waste as provided for in Provision IV.D.1. The applicant shall then perform a head space analysis or organic screening analysis of the sample to verify that the stabilize waste does not contain higher than the "allowable percentage by weight" of pre-identified potential air contaminants as described in Provision IV.D.2. The procedures for the head space analysis and organic screening analysis shall be that specified on Provision IV.D.10., below.

[IV.D.]

- 8. If a waste stream to be landfilled contains greater than the "allowable percentage by weight" of any constituent and it is a waste which is not amenable to treatment by incineration, it may be placed in the landfill only if the following requirements are met;
 - a. Personnel from the TCEQ regional office and Harris County Pollution Control Department are notified.
 - b. It can be demonstrated that the applicable TCEQ screening level will not be exceeded at the property boundary.
- 9. If a load of waste cannot be unloaded in accordance with <u>Provision IV.D.8.</u> above, then the load shall either not be authorized for land disposal at the facility, the load shall be reanalyzed and proved to be acceptable for disposal at the facility according to <u>Provision IV.D.1.-2.</u> or the waste shall be containerized or reprocessed as provided for in <u>Provision IV.D.6.</u> or incinerated. Incinerator residues designated for land disposal shall follow a Sampling and Analysis Plan for Incineration Residues as described in the Waste Analysis Plan instead of the analysis requirements in Provision IV.D..
- 10. For the purpose of verification, either the organic screening analysis or the headspace analysis shall be performed. The organic screening analysis is a combination of volatile and semi-volatile analyses using GC or GC/MS as described in the Waste Analysis Plan. The procedure for headspace analysis is described below:
 - a. A five gram aliquot of a sample shall be placed in a 10 milliliter serum bottle and capped. Using a 10 milliliter syringe, the bottle shall be evacuated once.
 - b. The serum bottle shall then be placed in a 70-75°C bath for 30 minutes.
 - c. Using a gas-tight syringe, an appropriate volume compatible with the GC system (injector, column) of the head space vapor shall be withdrawn and injected in a GC or a GC/mass spectrometer for analysis.
 - d. A printout or computer file of the GC or the reconstructed ion chromatogram shall be produced and retained.
- 11. Recordkeeping of information and data concerning the analyses and the concentrations of the organic constituents of the material to be processed at the facility for disposal as put forth in Provision IV.D. shall be maintained in the operating record at the plant site and made available for inspection by TCEQ personnel upon their request. This recorded information shall include waste compositions that are currently being received at the facility. The information and data concerning the concentrations of the organic material shall be retained for at least three years following testing.

PERMIT SECTION V – AUTHORIZED UNITS AND OPERATIONS

A. AUTHORIZED UNITS

- 1. The permittee is authorized to operate the facility units listed in "Attachment D" for storage, processing, and disposal subject to the limitation herein. All waste management activities not otherwise exempted from permitting under 30 Texas Administrative Code (TAC) Section 335.2 shall be confined to the authorized facility units listed in "Attachment D". References hereinafter in this permit to "TCEQ Permit Unit No.____" shall be to the facility units listed in "Attachment D". All authorized units must be clearly identified as numbered in "Attachment D". These units must have signs indicating "TCEQ PERMIT UNIT NO.____". All existing signs shall be changed in compliance with this provision within one (1) year of the permit issuance date.
- 2. The permittee shall comply with 40 CFR 264.17, relating to general requirements for ignitable, reactive, or incompatible wastes.
- 3. The permittee shall prevent inundation of any permitted units and prevent any discharges of any waste or runoff of waste contaminated stormwater from permitted units. Additionally, each loading or unloading area, associated with a permitted hazardous or nonhazardous waste management unit, shall be provided with a drainage control system which will collect spills and precipitation in such a manner as to satisfy the following:
 - a. Preclude the release from the system of any collected spills, leaks or precipitation;
 - b. Minimize the amount of rainfall that is collected by the system; and
 - c. Prevent run-on into the system from other portions of the facility.
- 4. The permittee shall operate and maintain the facility to prevent washout of any hazardous waste by a 100-year flood, as required by 40 CFR 264.18(b)(1).

B. CONTAINER STORAGE AREAS

- 1. Container storage areas and their approved waste types are shown in <u>Table V.B. Container Storage Areas</u>. The permittee is authorized to operate the facility container storage areas for storage subject to the limitations contained herein.
- 2. Containers holding hazardous waste shall be managed in accordance with 40 CFR 264.171, Condition of containers; 40 CFR 264.172, Compatibility of waste with containers; and 40 CFR 264.173, Management of containers.
- 3. The permittee shall construct and maintain the containment systems for the container storage areas in accordance with the drawings and details included in the Part B Application. At a minimum, the containment system must meet the requirements of 40 CFR 264.175.

[V.]

C. TANKS AND TANK SYSTEMS

- 1. The permitted tank units and their approved waste types are shown in <u>Table V.C. Tanks and Tank Systems</u>. The permittee is authorized to operate the permitted tank units for storage and processing subject to the limitations contained herein.
- 2. The permittee shall not place hazardous waste or treatment reagents in the tank system if they could cause the tank, its ancillary equipment, or a containment system to rupture, leak, corrode, or otherwise fail. [40 CFR 264.194(a)]
- 3. The permittee shall prevent spills and overflows from the tank or containment system as per the requirements of 40 CFR 264.194(b).
- 4. Secondary containment systems must be provided with a leak-detection system that is operated so that it will detect the failure of either the primary or secondary containment structure or the presence of any release of hazardous waste or accumulated liquid in the secondary containment system within 24 hours.
- 5. The permittee shall report to the Executive Director within 24 hours of detection when a leak or spill occurs from the tank system or secondary containment system to the environment. [40 CFR 264.196(d)(1)] A leak or spill of one pound or less of hazardous waste that is immediately contained and cleaned-up need not be reported. [40 CFR 264.196(d)(2)] Releases that are contained within a secondary system need not be reported.
- 6. Within 30 days of detecting a release to the environment from the tank system or secondary containment system, the permittee shall report the following information to the Executive Director: [40 CFR 264.196(d)(3)]
 - a. Likely route of migration of the release;
 - b. Characteristics of the surrounding soil (including soil composition, geology, hydrology, and climate);
 - c. Results of any monitoring or sampling conducted in connection with the release. If the permittee finds it will be impossible to meet this time period, the permittee shall provide the Executive Director with a schedule of when the results will be available. This schedule must be provided before the required 30-day submittal period expires;
 - d. Proximity of downgradient drinking water, surface water, and populated areas; and
 - e. Description of response actions taken or planned.

[V.C.]

7. The permittee shall submit to the Executive Director all certifications of major repairs to correct leaks within seven days of returning the tank system to use. [40 CFR 264.196(f)]

D. SURFACE IMPOUNDMENTS

Not Applicable.

E. WASTE PILES

Not Applicable.

F. LAND TREATMENT UNITS

Not Applicable.

G. LANDFILLS

- 1. There are three (3) hazardous waste landfills in existence at this facility, as specified in <u>Table V.G.1. Landfills and Provisions V.G.1.a. c.</u> below:
 - a. Permit Unit No. 1 (closed), above- and below-grade, total fill capacity not exceeding 1,500,000 cubic yards, identified as the South Landfill, authorized for post-closure only (<u>Provision VII</u>). Except for the leak detection and leachate collection systems requirements under <u>Provision V.G.4.</u>, the rest of <u>Provision V.G.</u> does not apply to Permit Unit No. 1.
 - b. Permit Unit No. 2, six (6) cells, above- and below-grade, total fill capacity not exceeding 815,000 cubic yards, identified as the North Landfill, authorized for operation and waste disposal subject to the limitations contained herein (<u>Provision V.G.</u>)..
 - c. Permit Unit No. 98, four (4) cells, above- and below-grade, total fill capacity not exceeding 658,000 cubic yards, identified as the East Landfill, authorized for operation and waste disposal subject to the limitations contained herein (Provision V.G.)..

2. Test Fill

a. Prior to construction of any new landfill or landfill cell, the permittee shall construct and evaluate a test fill(s) to verify that material specifications, and construction specifications, methodology and equipment proposed to construct a full-scale compacted clay liner achieve a field hydraulic conductivity of 1 x 10⁻⁷ cm/sec or less in the testfill(s). The test fill construction plans, specifications and documentation procedures shall conform with the guidance described in Section 2.3.4.1.2. (Test Fill Construction) of "Construction Quality Assurance For

[V.G.2.a.]

Hazardous Waste Land Disposal Facilities" (EPA Publication No. 530-SW-021, dated October, 1985) and "Quality Assurance and Quality Control for Waste Containment Facilities" (EPA/600/R-93/182). Hydraulic conductivity of the test fill pad shall be determined using the sealed double-ring infiltrometer (ASTM D 5093), or an equivalent method approved by the Executive Director.

The permittee shall complete construction and evaluation of the test fill in accordance with the terms of this permit and shall submit certification of proper construction and evaluation in accordance with <u>Provision II.A.6.</u>. This certification shall be signed by both the permittee and a qualified, licensed Professional Engineer competent in geotechnical engineering with experience in construction of compacted clay liners and evaluation of field permeabilities of compacted clay liners.

- b. The test fill certification report shall include the following information:
 - (1) Results of all preconstruction, construction, and postconstruction quality assurance inspections and testing performed;
 - (2) A summary of material specifications and construction specifications, methodology and equipment necessary to construct a full-scale compacted clay liner or cover achieving a field hydraulic conductivity of 1 x 10⁻⁷ cm/sec or less;
 - (3) Complete documentation, including a summary of raw data, detailing how the field hydraulic conductivity of the compacted test fill clay liner was measured and calculated; and
 - (4) The qualifications of the engineer certifying proper test fill construction and testing.
- 3. General Landfill design and Construction Requirements
 - a. The landfill liner system shall consist of at least two liners which meet the requirements of 40 CFR 264.301(c)(1)(I)(A) and (B). In addition, a leachate collection/leak detection system which meets the requirements of 40 CFR 264.301(c)(2) and (3) shall be installed above and between the liners. The landfill liner system and leachate collection/leak detection system shall meet the specifications listed in <u>Table V.G.3. Landfill Liner System</u> and <u>Table V.G.4 Landfill Leachate Collection System</u>.
 - b. Soil Liner

All constructed clay-rich soil structures (liners, dikes, and cover) shall be constructed according to the specifications and methodologies established for the soil liner test fill and shall meet or exceed the following minimum specifications:

[V.G.3.b.]

- (1) Materials for all constructed clay-rich structures shall be excavated, broken down, hydrated to the proper moisture content (if necessary) and then recompacted in loose lifts not less than 6.0 inches nor greater than 9.0 inches in thickness. If the soils are significantly below optimum moisture content (> 3%) the maximum clod size of the soils will be reduced to less than 2 inches so that hydration can occur uniformly. Each lift shall be scarified to a depth no greater than 2.0 inches nor less than 0.5 inches prior to placement of the following lift.
- (2) Compaction shall be to at least 95% Standard Proctor Density at or slightly above optimum moisture content. The permittee shall compact each clay-rich structure with a sheepsfoot-type roller of the same drum diameter and length, empty and/or ballasted weight, length and face area of the feet, and yoking arrangement as used to construct the test fill required in this section. For areas inaccessible to a sheepsfoot roller, a tamping foot-type compactor, smooth-drum roller or vibrating-plate compactor having foot pressures of at least 250 pounds per square inch (psi) shall be substituted.
- (3) The term "clay-rich soil," as described in this permit, shall be defined as soil exhibiting the following minimum characteristics:
 - (a) Plasticity index greater than or equal to 15.
 - (b) Liquid limit greater than or equal to 30.
 - (c) Percent passing No. 200 sieve greater than or equal to 30.
- (4) Laboratory Standard Proctor Density and optimum moisture content tests performed in accordance with ASTM D-698 for a minimum of one (1) representative sample from each 5000 cubic yards of soil;
- (5) Field density and moisture control tests on constructed soil liners performed in accordance with ASTM D-1556, ASTM D-2167, ASTM D-2922, or an equivalent method at a frequency of at least one per every 10,000 square feet of each lift placed;
- (6) Atterberg Limits performed in accordance with ASTM D-4318 at a frequency of at least on per every 1000 cubic yards of soil and for a minimum of two (2) tests per layer per cell;
- (7) Percent passing No. 200 sieve performed in accordance with ASTM D-1140 at a frequency of at least one per every 1000 cubic yards of soil and for a minimum of two (2) tests per layer per cell;

[V.G.3.b.]

- (8) Soil liner thickness and slope determinations at a rate of at least one (1) determination by appropriate surveying techniques per every 10,000 square feet of soil liner installed; and
- (9) Hydraulic conductivity measurements expressed in terms of cm/sec for representative undisturbed core samples of the constructed soil liner system components at a frequency of one per acre per lift.

c. Geomembrane Liner

- (1) The following conditions shall be satisfied prior to the installation of any geomembrane liner:
 - (a) The upper four (4) inches of the supporting soil for the liner shall not contain any stones, roots, or foreign objects having a dimension greater than one (1) inch.
 - (b) The surface to be lined shall be prepared so as to provide a surface that is free of irregularities, loose earth, desiccation cracks, and abrupt changes in grade.
 - (c) The compacted clay liner shall be maintained at or slightly above optimum moisture content and free of desiccation cracks prior to placement of any overlying geomembrane liner. Verification testing an modifications to moisture content shall be performed for the compacted clay liner during soil compaction activities and hence at least every seven (7) days until placement of the overlying component of the liner system. Final soil moisture content determinations must be performed for the clay liner within twenty-four (24) hours of placement of the overlying component of the liner system. At a minimum, soil moisture content shall be measured at six (6) inch depths at a minimum rate of one (1) test per 10,000 square feet of soil liner. The date, location, and results of all soil moisture measurements and the date and location of the synthetic liner placement shall be included in the required certification The results of a visual inspection made by the certifying engineer, noting the presence or absence of desiccation cracks and any remedial measures taken to remove these features, must also be included in the landfill certification report.
- (2) During installation, all persons walking on the liner shall wear shoes which will not damage the liner.
- (3) The geomembrane shall not be installed during rainfall or in an area of pooled water.

[V.G.3.c.]

- (4) The geomembrane shall be installed so that there will not be tension or wrinkles at the anticipated average temperature for its final use.
- (5) All personnel seaming the geomembrane shall have previous project experience in field seaming geomembrane liner using similar seaming methods.
- (6) An anchor trench having minimum dimensions of two (2) feet in width and two (2) feet in depth shall be constructed along the perimeter of the landfill trench.
- (7) The geomembrane panel shall be secured at the ground surface in the anchor trench specified in <u>Provision V.G.3.c.(6)</u> and shall be installed such that field seams, to the extent possible, are aligned parallel to the landfill sidewall slope.
- (8) Adjacent panels of the geomembrane shall be overlapped at least three (3) inches.
- (9) All seam areas of the geomembrane shall be clean and free of moisture, dust, dirt, and any other foreign material of any kind.
- (10) Each seaming unit for extrusion welding shall have temperature gauges that indicate the temperature of the extrudate in the machine and at the nozzle.
- (11) Field seaming shall not be done if the ambient temperature is below 34°F.
- (12) Field seaming shall not be done if the ambient temperature is below 50°F, but greater than 34°F, unless the geomembrane is preheated above that temperature by either the sun or a hot air device.
- (13) Prior to field seaming the geomembrane each day, all personnel responsible for seaming shall prepare a test seam of at least two (2) feet in length. These test seams shall be tested for adequate strength (seam peel stress equal to 100 percent of the tensile strength of the geomembrane used) prior to field seaming the geomembrane. All test seaming shall be performed under the same conditions as production seaming. Any problems with equipment or test seam strength shall be corrected prior to field seaming the geomembrane.
- (14) All seam and nonseam areas of the geomembrane shall be visually inspected for signs of defective seams, blisters, punctures, undispersed raw materials, and any sign of contamination by foreign matter. Any problems discovered shall be marked, repaired, and retested or re-evaluated. The geomembrane surface shall be clean at the time of these inspections.

[V.G.3.c.]

- (15) All field seams shall be nondestructively tested over their entire length. Seam testing shall be performed as field seaming progresses. Any defects shall be marked, repaired, and retested.
- (16) Field seams shall be tested using, at a minimum, an ultrasonic tester, a pressure tester, or a vacuum tester suited for this purpose. All testing equipment shall be calibrated or properly adjusted prior to use each day.
- (17) All field seams shall be destructively tested at a minimum frequency of one sample for every 500 feet of weld for adequate strength as defined above. Areas of removed samples shall be patched and the patched seams non-destructively tested in accordance with Provision V.G.3.c.(15) above.
- (18) If any seam tested in accordance with <u>Provisions V.G.3.c.(15)(16)</u>, and (17) is shown to be defective, the permittee shall evaluate the entire length of seam represented by the defective test results to determine the extent of the defect(s): The permittee shall replace or repair defective seams prior to progressing with field seaming operations.

d. Leachate Collection/Leak Detection System

- (1) Sieve analysis tests in nonsynthetic material at a minimum rate of one (1) test per 400 cubic yards;
- (2) Hydraulic conductivity measurements expressed in units of cm/sec at a frequency of at least four (4) representative samples collected from each compacted drainage layer;
- (3) Drainage layer thickness determinations at a rate of at least one (1) determination by appropriate surveying techniques per every 10,000 square feet of drainage layer installed;
- (4) Drainage pipe slope determinations at a rate at least one determination by appropriate surveying techniques per every 20 feet of drainage pipe and an overall visual inspection of all pipes for sagging and improper bedding.

e. Run-On and Run-Off Control System

The permittee shall design and construct a run-on control system and a run-off management system as specified in the approved permit application Sections V.G.10. and 11. [30 TAC Sections 335.173(g) and (h)]

f. The permittee shall submit certification of proper landfill construction prior to the placement of waste in a landfill or landfill cell. The certification shall be submitted in accordance with Provision II.A.6. Within thirty (30) days of submittal of such certification, the permittee shall submit a certification report which contains the results of all tests conducted. The permittee shall conduct any tests, inspection, or

[[V.G.3.f.]

measurements that are deemed necessary in the judgement of the registered professional engineer supervising the cell construction, for the engineer to certify that the landfill cell has been constructed in conformance with the design and construction specification of this permit. The certification report shall, at a minimum, contain the following drawings ant test results:

- (1) Scaled plan-view and cross-sectional drawings that accurately depict the aerial boundaries and dimensions of the cell; separation distance(s) of the cell from the property boundary; minimum, maximum, and representative elevations of the excavation of the cell; minimum, maximum, and representative elevations of the cell as component parts of the liner system; location, site, volume, materials of construction, and slope, as applicable, of all soil and synthetic liners and leachate collection and leak detection system components.
- (2) For the soil liner, geomembrane liner, and leachate collection/leak detection system; all observations, test, and analyses required to ensure that installation has been completed in accordance with the terms of this permit and the incorporated design plans.

4. General Landfilling Operations

The permittee shall conduct landfilling operations according to the following requirements:

- a. The initial two (2) feet of waste or soil placed in a landfill cell shall be placed with a tracked vehicle (D-6 Caterpillar size or smaller) and shall be composed of bulk or processed non-containerized waste. Rubber-tired vehicles and roller-type compaction equipment shall not drive on any portion of the leachate collection system in a landfill cell until the initial two (2) foot layer of waste or soil has been placed.
- b. Upon compliance with <u>Provision V.G.4.a.</u>, all subsequent waste, except containerized waste, shall be applied in lifts not greater that eighteen (18) inches and compacted sufficiently to minimize settlement of landfilled waste.
- c. [30 TAC Section 335.173(i)] All collection and holding facilities (e.g., tanks or basins) associated with run-on and run-off control systems shall be maintained and must be emptied or otherwise managed expeditiously after storms to maintain design capacity of the system.
- d. All rainwater that collects in an active landfill cell, including rainwater that drains into the landfill cell from interior access roads, shall be managed as contaminated water and disposed of accordingly at an authorized on-site waste management unit or at an authorized off-site facility.
- e. While a landfill cell is in operation, it must be inspected at least weekly and after rainfall events in accordance with 40 CFR 264.303(b).

[V.G.4.]

- f. The permittee shall remove leachate from collection sumps as often as necessary to ensure that the leachate depth in the leachate collection/leak detection system is always less than the thickness of the drainage material and never exceeds 12 inches.
- g. The permittee shall inspect each leak detection system and record the amount of liquids removed from each leak detection system sump at least once each week during the active life and closure period of the landfill.
- h. Liquids removed from the leachate collection/leak detection systems shall be classified in accordance with 30 TAC Chapter 335, Subchapter R (Waste Classification) and shall be managed accordingly at an authorized on-site waste management unit or at an authorized off-site facility.
- i. Control of Wind Dispersal of Particulate Matter
 - [30 TAC Section 335.173(j)] The permittee shall cover or otherwise manage the landfill to control wind dispersal of particulate matter in accordance with the procedures described in Section V.G.12. of the permittee's approved permit application.
- j. The permittee shall construct an interim cover specified in <u>Provision VII.E.2.a and b.</u> during landfill operation progressing continuously as the waste material reached the levels specified in the permit application.
- k. Requirements for Ignitable, Reactive or Incompatible Wastes

The permittee shall manage ignitable, reactive incompatible wastes in accordance with the following conditions:

- (1) [40 CFR 264.312] Ignitable or reactive wastes shall not be placed in a landfill, unless the waste and landfill meet all applicable requirements of 40 CFR 268, and the resulting waste, mixture, or dissolution of material no longer meets the definition of ignitable or reactive waste under 40 CFR 261.21 or 261.23; and
- (2) Ignitable wastes in containers may be disposed in the landfill cells in accordance with 40 CFR 264.312(b).
- (3) Incompatible wastes, or incompatible wastes and materials must not be placed in the same landfill cell unless the permittee complies with 40 CFR 264.17(b).
- 1. Special Requirements for Hazardous Waste Codes F020, F021, F022, F023, F026, and F027

None of these wastes are authorized for disposal at this facility.

[V.G.4.]

m. Stabilization of Liquid Wastes

- (1) The permittee shall not place liquids or waste containing free liquids, whether or not sorbents have been added (except lab waste in overpacked containers, as described in 40 CFR 264.316) in landfill cells. "Free liquids" are liquids which readily separate from the solid portion of a waste when the waste mixture is at a temperature above 32°F and ambient pressure.
- (2) An absorbent is defined as a material that is capable of physically holding a liquid within pores or interstices by such physical forces as tension or capillary action. An absorbent is defined as a material that is capable of physically adhering a liquid to its (the material's) surface(s) through molecular polar forces. The terms "absorbent" and "adsorbent" shall both be indicated whenever the term "sorbent" is used in this permit.

n. Stabilization of LDR Wastes

Appropriate stabilization methods shall be used for waste streams requiring treatment to meet the 40 CFR Part 268 treatment standards. Successful stabilization is said to be achieved if post-treatment analyses demonstrate that applicable treatment standards will be achieved in accordance with the land disposal restrictions of 40 CFR Part 268.

o. Special Requirements for Containers

[40 CFR 264.315] All containers, unless they are very small, such as an ampule, must be either at least 90 percent full when placed in the landfill, or crushed, shredded or similarly reduced in volume to the maximum practical extent before burial and the landfill.

p. Special Requirements for the Disposal of Lab Packs

[30 TAC 335.175(e)] The permittee shall not place containers holding liquid waste, or waste containing free liquids in a landfill, unless the following conditions apply:

- (1) The container is very small, such as an ampule;
- (2) The container is designed to hold free liquids for use other than storage, such as a battery or capacitor; or
- (3) The container is a lab pack as defined and managed in accordance with 40 CFR 264.316.

[V.G.4.]

q. Waste Liner Compatibility

The permittee shall ensure that wastes to be landfilled will not impair the function of the synthetic liner. At a minimum, waste to liner compatibility testing shall be conducted for those wastes whose compatibility with the selected membrane liner have not been conducted and the effects are unknown. For wastes and liners upon which tests have been conducted and the results and/or effects are known (manufacturer's literature, other experimental literature, etc.), additional testing is not required. The permittee shall maintain test results and/or documentation that confirms waste to liner compatibility at the facility. The waste liner compatibility shall be conducted in accordance with the following provisions:

- (1) Waste to liner compatibility testing shall be conducted for all wastes, as identified by TCEQ Waste Classification Code Number, which will contain a total (additive) concentration of the compounds listed in "Attachment F" of more than or equal to five (5) percent by weight when placed in a landfill cell. For those wastes which will be landfilled directly without processing, this percentage determination shall be based on the raw wastes. For wastes which will be processed prior to landfilling, this percentage determination shall be based on the product from the mixer.
- Waste to liner compatibility testing required pursuant to <u>Provision V.G.4.q.</u> shall be performed in accordance with EPA Test Method 9090 or other test method approved by the Executive Director using leachate derived from representative samples of the waste to be placed in a landfill cell. The Toxicity Characteristic Leaching Procedure (TCLP) [as published in the 40 CFR Part 268, Appendix I] shall be used to generate leachate for liner compatibility testing, except that acetic acid shall not be added to the leaching medium. If the waste will be landfilled directly without processing, leachate will be generated using the raw wastes. If the waste will be processed, then leachate generated from the same waste to admix ration as is proposed for the product from the mixer shall be used.
- (3) The permittee shall reject any waste tested pursuant to this Provision shown to affect a ten (10) percent or greater change in the synthetic liner's physical dimensions, mass, tear resistance (ASTM D-1004), puncture resistance (FTMS 101B, Method 2065), tensile properties (ASTM D-638), hardness (ASTM D-2240), and elongation at break. The synthetic liner material tested shall have equivalent physical and chemical properties and dimensions as that used in secure cell construction. The permittee may process the waste at a higher admix/waste ratio and repeat the waste to liner compatibility testing procedure using leachate from the processed waste. The admix materials and admix/waste ratio which are determined to produce a waste which does not significantly affect (less that ten (10) percent change) the liner shall be the minimum (for liner compatibility purposes) used on future shipments of the particular waste.

[V.G.4.q.]

- (4) The permittee shall not place in any landfill cell any waste containing more than ten (10) percent by weight of those constituents listed in "Attachment F". This percentage determination shall be based on raw wastes only.
- (5) The waste to liner compatibility requirements of this Provision shall be waived for wastes received from small quantity generators (as defined by 40 CFR Part 261.5).
- r. The permittee shall only dispose of on-site processed waste (i.e., stabilized on-site incinerator ash) directly below stability dike extensions 1 through 5 of the North Landfill within the volume expansion proposed in the Part B permit application. Commercial waste may be placed within the center part of the landfill outside of the stability dike footprint.
- 5. East Landfill Action Leakage Rate and Response Action Plan [40 CFR 264.302 and 264.304.]
 - a. The permittee shall establish an Action Leakage Rate (ALR) pursuant to 40 CFR 264.302. The permittee shall determine if the ALR, given in gallons per acre per day, for each sump has been exceeded by converting the weekly or monthly flow rate from the monitoring data obtained to an average daily flow rate (gallons per acre per day) for each sump. The permittee shall calculate the average daily flow rate for each landfill sump on a weekly basis during the active life and closure period. The ALR for the sumps in each landfill cell is given in <u>Table V.G.1</u>.
 - b. Prior to receipt of waste, the permittee shall have in place an approved Response Action Plan (RAP) which meets the requirements of 40 CFR 264.304. The RAP shall set forth the actions to be taken if the ALR is exceeded.
 - 6. Cell Location Survey

The permittee shall maintain the following items in the operating record:

- a. A map with the exact location and dimensions (including depth) of each cell with respect to permanently surveyed benchmarks.
- b. A record of the areal and vertical location of each waste placed into a landfill cell.
- 7. Solid waste, solid waste residues, or contaminated soils encountered upon excavation of any new landfill cell must be removed to a distance of 10 feet prior to construction of the cell in accordance with 30 TAC Chapter 350. At a minimum, one soil sample shall be tested for every 10,000 square feet of excavation area and analyzed for 40 CFR Part 264 Appendix VIII constituents reasonably expected to be present in the excavation area. Sampling shall be evenly distributed over the entire excavation surface area and shall be representative of soil remaining at the excavation base and sidewalls. The engineer certifying construction shall specify additional sampling points within the excavation of visual evidence indicates

[V.G.7.]

additional samples are needed to adequately determine the limits of contamination. The excess void created by removal of contaminated soils, solid waste or solid waste residues shall be replaced by soils having properties equivalent to soils approved for liner construction in <u>Provision V.G.3.b.</u> The backfill material shall be compacted to at least 95% Standard Proctor Density at or slightly above optimum moisture content.

- 8. Pressure relief wells installed at the perimeter of North Landfill cells 1 through 4 shall be constructed in accordance with the design specifications of <u>Provision VI.B.</u> These pressure relief wells shall not be plugged or otherwise taken out of service without written approval by the Executive Director. The permittee shall use a total of seventeen (17) pressure relief wells installed as indicated in "Attachment E" or an existing ground water recovery system in conjunction with one or more relief wells in order to depress piezometric water levels to no more than 3.0 feet above MSL during construction of a cell. Piezometric water levels shall be maintained in the area of each North Landfill cell such that hydraulic uplift will not exceed overburden pressure on each cell liner.
- 9. Pressure relief wells installed at the perimeter of the East Landfill shall be constructed in accordance with the design specifications of <u>Provision VI.B.</u> These pressure relief wells shall not be plugged or otherwise taken out of service without written approval by the Executive Director. The Permittee shall use a minimum of thirteen (13) pressure relief wells in Zone 1 (Stratum 1) and nineteen (19) pressure relief wells in Zone 3 (Stratum 3) to depress the piezometric water levels during construction activities for the East Landfill. Piezometric water levels shall be maintained at an elevation that will insure that hydraulic uplift will not exceed overburden pressure at any time in any area of the East Landfill. Any changes in this pressure relief system must be approved in writing by the Executive Director.
- 10. Against the interior of the perimeter containment levee of each cell, waste shall be placed no higher than three (3) feet below the lowest crest elevation of the perimeter levee, and sloped up at no more than 3% for the North and East Landfills from the interior side of the perimeter containment levee toward the opposite side or end of the landfill cell. No portion of waste shall be higher than the lowest elevation of the crest of the perimeter containment levee.
- 11. Leachate Monitoring System Operational Requirements

The permittee shall determine leachate quality in the primary and secondary leachate collection system of each East Landfill cell throughout the active life of the facility and the post closure care period in accordance with the parameter list and sampling schedule specified in the Groundwater Detection Monitoring Plan in Section VI of the Part B application.

H. <u>INCINERATORS</u>

1. The incinerators and their approved waste types are shown in <u>Table V.H.1 – Incinerators</u>. The permittee is authorized to operate the incinerators for processing subject to the limitations contained herein.

[V.H.]

2. Limitations on Wastes Burned

- a. The feed rate of total hazardous wastes shall not exceed the limitations set out in <u>Tables V.H.2 (I) and V.H.2 (II) Incinerator Permit Conditions, Monitoring and Automatic</u>

 Waste Feed Cutoff Systems for Train I and Train II [40 CFR §264.345(b)(2)]
- b. The total feed rate of metals, ash and chlorine (Train I plus Train II) shall not exceed the limitations set out in <u>Table V.H.3 Maximum Constituent Feed Rates</u>", at any time. [40 CFR §264.345(b) and TAC §305.127]
- c. The hazardous waste feeds to the Incinerator shall not contain greater than 100 ppm of organic hazardous constituent listed in 40 CFR Part 261 Appendix VIII, unless the constituent has a thermal stability Class ranking equal to or less than Class 1 (demonstrated with 1,2-Dichlorobenzene and 1,2,4,5-Tetrachlorobenzene) [40 CFR §264.341(b)]
- d. Compliance with the ash and chlorine feed rate limits identified in <u>Table V.H.3.</u> shall be evaluated using both detected an non-detected analytical results for ash and chlorine in the feed streams to the unit. Detections are analytical results equal to or greater than the statistically-derived Method Detection Limit (MDL) as adjusted to account for sample-specific characteristics and actions, including sample matrix, sample size, preparation or cleanup procedures performed, and any concentration or dilution of the sample by the laboratory. If ash or chlorine is not detected, the results shall be reported at the value equal to the MDL, adjusted as described above to reflect sample-specific characteristics and action, and shall be flagged with a notation, such as "<" or "U", to indicate that the constituent was not detected in the sample. Feedrate calculations for ash and chlorine shall us the full value of the detected analytical results and one-half (1/2) the value of the non-detected results. [30 TAC Section 305.127(2)]

3. <u>Incinerator Area Operating Conditions</u>

- a. Compliance with the permit conditions specified in <u>Provisions V.H.2</u> of this permit will be generally regarded as compliance with the performance standards of 40 CFR §264.343 as adopted by reference in <u>Provision II.C.</u>. However any evidence that compliance with <u>Provision V.H.2</u> is insufficient to ensure compliance with the referenced performance standards, may be "good cause" justifying initiation of an amendment pursuant to 30 TAC §305.62(d), or permit revocation or suspension pursuant to 30 TAC §305.66.
- b. The permittee may not feed hazardous wastes to the permitted units listed in <u>Table V.H.1</u> unless the following operating conditions are satisfied:

- (1) The unit meets the conditions specified in <u>Tables V.H,2 (I) and V.H.2 (II) Incinerator Permit Conditions, Monitoring and Automatic Waste Feed Cutoff System.</u> [40 CFR §264.345]
- (2) The air pollution control equipment shall be operated in accordance with the conditions specified in the <u>Table V.H.2 (I) and V.H. 2 (II) Incinerator Permit Conditions</u>, <u>Monitoring and Automatic Waste Feed Cutoff Systems.</u> [40 CFR §264.345(b)(5) and (6)]
- (3) The permittee maintains and operates an automatic waste feed cut-off system which shall activate under the conditions listed in <u>Tables V.H.2 (I) and V.H. 2 (II) Incinerator Permit Conditions, Monitoring and Automatic Waste Feed Cutoff Systems.</u>
 [40 CFR §264.345(e)]
- c. The permittee shall comply with the emission rate limits in <u>Table V.H.4. Maximum Allowable Emission Rates</u> when burning hazardous waste. [40 CFR §264.343(b), §264.343(c), and 30 TAC §305.127]
- d. The incinerator units must be operated in accordance with <u>Provision V.H.3.b</u> at all times when hazardous wastes remains in the units. [40 CFR §264.345(a)]
- e. Throughout normal operation, the permittee must conduct sufficient waste analysis in accordance with the Waste Analysis Plan adopted by reference in <u>Provision I.B.</u> to verify that wastes fed to the incinerator units are within the physical and chemical composition limits specified in the permit. [40 CFR §264.341(b)]
- f. An incinerator shall cease burning hazardous wastes when changes in waste feed, incinerator design, or operating conditions deviate from the limits specified herein. [40 CFR 264.345(f)]
- g. The Permittee shall calculate hourly rolling averages and in accordance with the requirements in 40 CFR §266.102(e)(6). The Permittee shall ignore periods of time when one-minute values are not available for calculating the hourly rolling average. When one-minute values become available again, the most recent one-minute average value is added to the previous 59 values to calculate the hourly rolling average. [30 TAC §305.127(2)]
- 4. Trial Burn Requirements Not Applicable
- 5. <u>Short-Term Incinerator Operating Conditions</u> Not Applicable
- 6. <u>Incinerator Sampling Requirements</u>
 - a. The permittee may conduct additional shakedown and testing in accordance with a test plan or Trial Burn Plan approved by the Executive Director. The permittee may conduct 720 hours of additional shakedown prior to conducting the test. The results from the additional trial burn testing shall be used for the purpose of

[V.H.6.a.]

determining compliance with the performance standards of 40 CFR Part 63, Subpart EEE, and for determining adequate operating conditions under 40 CFR 264.345 or 40 CFR Part 63, Subpart EEE. After the approved testing is completed, the unit shall be operated in accordance with the operating conditions in effect prior to the commencement of the testing. The permittee may request a permit modification or amendment pursuant to 30 TAC §305.69 or §305.62 to incorporate the new operating conditions demonstrated by the trial burn results.

- b. The permittee shall conduct an initial sampling and analysis of the waste and stack emissions prior to March 30, 2005, and at least every two and one-half years thereafter, and upon request of the Executive Director. Sampling and analysis of the waste and exhaust emissions shall be conducted to verify compliance with the feed rate limits in Table V.H.3. and the emission limits in Table V.H.4. and to ensure achievement of the performance standards 40 CFR 364.343 under normal operating conditions. Under normal operating conditions, each of the operating parameters specified in Tables V.H.2(I) and (II). must be held within the range of the average value over the previous 12 months and the maximum or minimum allowable limit, as appropriate. The average value is defined as either the mean of all values recorded over the previous 12 months or the sum of the rolling average values recorded over the previous 12 months divided by the number of rolling averages recorded during that time. The average value must not include calibration data, malfunction data, and data obtained when not burning hazardous waste. Conflicting parameters shall be identified in association with the targeted operating parameter ranges for the testing in the sampling plan. [40 CFR 264.347(a)(3)]
 - (1) The permittee shall submit an original and four copies of a stack test plan to the TCEQ Executive Director at least 180 days prior to sampling and analysis. At a minimum, the test plan shall include the following, prepared in accordance with EPA guidance:
 - A sampling and analysis plan describing the parameters to be tested, monitored and/or analyzed and;
 - A Quality Assurance Project Plan.
 - (2) At a minimum, the incinerator shall be tested for emissions of carbon monoxide, particulate matter, oxygen, other constituents listed in <u>Table V.H.4.</u>, and other constituents as requested by the Executive Director.
 - (3) The operating parameters listed in <u>Table V.H.2.</u>, shall be monitored and recorded during the stack test.
 - (4) The Waste Section of the local TCEQ regional office shall be contacted a minimum of 60 days prior to sampling to schedule a pretest meeting.

[V.H.6.b.]

- (5) An original and four copies of the final sampling report shall be forwarded to the Executive Director within 90 days after receipt of the sampling results.
- 7. <u>Incinerator Monitoring, Testing and Inspection Requirements</u>
 - a. The permittee shall monitor and record the parameters listed in <u>Tables V.H.2.(I)</u> and <u>V.H.2 (II)</u> <u>Incinerator Permit Conditions, Monitoring and Automatic Waste Feed Cutoff Systems.</u> All monitors shall record data in the units corresponding to the permit limits unless otherwise specified herein. Data compression techniques for recording will not be accepted. [40 CFR §264.347(c) and (d)]
 - b. Stack oxygen and carbon monoxide concentrations shall be measured using Continuous Emissions Monitoring Systems (CEMS). [40 CFR §264.347 (a)(2)]
 - (1) The oxygen and carbon monoxide CEMS shall meet the installation, performance and equipment specifications in 40 CFR Part 266, Appendix IX, Section 2.1.
 - (2) Oxygen concentration shall be quantified and reported as percent by volume (%) on a dry basis. Carbon monoxide concentrations shall be quantified and reported as parts per million by volume (ppmv), corrected to 7% by volume oxygen, on a dry basis.
 - c. The permittee shall properly calibrate, maintain, and operate all CEMS and establish a quality assurance program to evaluate and monitor the CEMS performance in accordance with Appendix IX of 40 CFR Part 266. [30 TAC §305.127]
 - d. The waste feed cut-off system and associated alarms for the Incinerators must be tested at least weekly when hazardous waste is burned to verify operability. In addition, a complete inspection and function test shall be performed on all system alarms and emergency control devices at least annually. [40 CFR §264.347(c), 30 TAC §305.127]
 - (1) System testing will be accomplished by activating (i.e., closing) the waste feed cutoff valve and by checking all inputs and their associated alarms, to the waste feed cutoff system. A check of every input to the waste feed cutoff system does not have to activate the waste feed cutoff. If the permittee maintains a "fail safe" valve (i.e., remains in the closed position in event of failure), only the control panel circuits and associated alarms need testing each 7-day period. This may be accomplished using an electronic loop test for the components of the system, including sensors, which test the operability of the circuit without actually closing the "fail safe" valve.

[V.H.7.d.]

- (2) If the waste feed cutoff system "trips" (i.e., waste feed is cut off due to a process operations excursion from specified limits) during the weekly period prior to testing, the actual trip will satisfy the need to test the waste feed cutoff valves and non-pumpable waste feed cutoff systems. However, the other components of the cutoff system still need to be tested to ensure they are functioning properly.
- e. The monitoring and inspection data collected in <u>Provisions V.H.7.a-c</u> shall be recorded and placed in the operating log as required by 40 CFR §264.347(d). In addition to the specific requirements of that paragraph, the permittee shall also record:
 - (1) All occasions when waste is being fed to the Incinerator units and the operating limits specified in Provision V.H.2 are exceeded;
 - (2) All occasions when the waste feed is cut off by the automatic waste feed cut-off system, including the date, time and cause of the incident that triggered the cut-off; and
 - (3) All occasions when uncontrolled fugitive emissions from the Incinerator unit(s) are detected.
- f. During an automatic waste feed cut-off, the permittee shall continue to monitor the operating parameters for which permit limits are established. [40 CFR §264.347]
- g. For each set of ten exceedances of an emission standard or operating limit while hazardous waste remains in the combustion chamber during a 30-day block period, the Permittee must submit a written report within 5 calendar days of the tenth exceedance documenting the exceedances and results of the investigation and corrective measures. The report shall include the reason for the cut-offs and actions taken by the permittee to address the problem. The Executive Director of the TCEQ shall take appropriate action based on the results of the report. [30 TAC §305.127]
- h. Except for an instrument during its calibration period, the Permittee shall continuously record all monitoring data as required in <u>Tables V.H.2 (I) and V.H.2 (II) Incinerator Permit Conditions, Monitoring and Automatic Waste Feed Cutoff Systems.</u> Waste may continue to be fed to the incinerator during CEMS calibration check periods no exceeding 20 minutes in duration. Each CO and oxygen CEMS shall operate at a minimum of 90% uptime, based on a 24-hour period of operation.
- i. Auxiliary fuel fired while operating any primary or secondary combustion device is limited to natural gas, or No. 2 Fuel Oil containing less than 0.50% sulfur by weight, or Used Oil meeting the specifications in 40 CFR 279.11, 30 TAC Chapter 324, Subchapter A, and the Part B permit application. Auxiliary fuel is also that fuel exempted in 40 CFR 261.2 or 40 CFR 261.38 (Comparable Fuels), when fired at or above 1500° F with an emissions limit of either of <100 ppm (HRA) Carbon Monoxide or <10 ppm (HRA) Total Hydrocarbon.

[V.H.7.j.]

- j. The permittee shall control fugitive emissions by use of kiln shrouds at both ends of the rotary kilns in Train I and Train II incinerators. Under normal operations, the induced draft fan shall maintain the maximum combustion zone pressure below the ambient pressure. The permittee shall inject air into the inlet and outlet shrouds to maintain approximately 0.2 inches of water pressure in the shrouds. During transient pressure spikes, the pressurized shrouds shall act as barriers to prevent any gas leaks from the combustion zone. The following conditions shall apply to the shrouds:
 - (1) The permittee shall inject air into the inlet and exit shrouds such that the difference between pressure in each shroud and the secondary combustion chamber (SCC) will be a minimum of 0.2 inches of water column.
 - (2) The permittee shall measure pressures in the SCC and in both shrouds of the rotary kilns on a continuous basis. The pressure differential Operating Parameter Limit (OPL) and automatic waste feed cut-off for each inlet and outlet shall be set independent of each other;
 - (3) If at any time the pressure differential between each shroud and the SCC is less than 0.2 inches of water column, and the pressure in the SCC is equal to zero or higher, the automatic waste feed cut-off shall be triggered instantaneously;
 - (4) The automatic waste feed cut-off shall not be triggered if the shroud fan fails, and the pressure in the SCC is lower than the ambient pressure; and
 - (5) If the pressure difference in each shroud and the SCC is at least 0.2 inches water column, and the pressure in the SCC is higher than the ambient pressure for more than 10 seconds, the automatic waste feed cut-off shall be triggered instantaneously.
 - (6) The "instantaneous automatic waste feed cut-off" in all the above conditions means that the waste feed shall be cut-off within one second of any pressure OPL exceedance, provided the pressure is measured on a continuous basis in the Train I and Train II Incinerators and the shrouds.

[V.H.]

8. Indirect Risk Provisions

- a. The feed rates of the constituents of concern shall not exceed the limitations set out in Table V.H.3. Maximum Constituent Feed Rates.
- b. Compliance with the hourly feed rate limits in <u>Table V.H.3. Maximum Constituent</u> <u>Feed Rates</u> shall be determined using hourly rolling average feed rates.
- c. Metals concentrations of the constituents of concern in <u>Table V.H.3. Maximum Constituent Feed Rates</u> shall be determined according to the methods in the Waste Analysis Plan adopted by reference in <u>Provision IV.A.</u>, and by the appropriate SW-846 Method for metals not listed in the Waste Analysis Plan.
- d. Compliance with the annual feed rate limits (*i.e.*, tons/year) in <u>Table V.H.3.</u> <u>Maximum Constituent Feed Rates</u> shall be determined by using the hourly rolling averages for a distinct year beginning with the date (or anniversary, as appropriate) of permit issuance and continuing for one calendar year. When the hourly feed rate limit for a metal is less than or equivalent to the annual feed rate specified on an hourly basis and the permittee has not exceeded the hourly feed rate limit during a calendar year, compliance with the annual feed rate limit may be assumed.
- e. Compliance with the metals feed rate limits identified in <u>Table V.H.3.</u> for each incinerator shall be evaluated using both detected and non-detected analytical results for metals in the feed streams to the unit. Detections are analytical results equal to or greater than the statistically-derived Method Detection Limit (MDL) as adjusted to account for sample-specific characteristics and actions, including sample matrix, sample size, preparation or cleanup procedures performed, and any concentration or dilution of the sample by the laboratory. If a metal is not detected, the results shall be reported at the value equal to the MDL, adjusted as described above to reflect sample-specific characteristics and actions, and shall be flagged with a notation, such as "<" or "U", to indicate that the constituent was not detected in the sample.

Feed rate calculations for each metal shall use the full value of the detected analytical results and one-half (1/2) the value of the non-detected results. The feed rates of metals shall be determined in accordance with 40 CFR 266.102(e)(6).

f. Pumpable bulk liquid wastes containing any of the chemicals listed in <u>Table V.H.5.</u> with a represented concentration or concentration range in excess of 10 percent by weight, as determined by process knowledge or by sampling and analyzing a representative sample of the waste, shall only be fed through Permit Unit Nos. 99 and 103. The number and type of Fugitive Components associated with Permit Unit Nos. 99 – and 103 shall conform to those specified in the Part B permit application submittals dated September 6, 2002.

[V.H.8.]

- g. The permittee shall monitor all equipment associated with the incinerator tank farm, loading and unloading operations, and the incinerator direct feed systems, on a quarterly basis, in accordance with Method 21 in 40 CFR Part 60, perform an audio/visual/olfactory (AVO) walkthrough inspection of all associated equipment at least weekly, and control fugitive emissions of volatile organic compounds (VOCs) from such equipment by implementing a leak detection and repair program as required by TCEQ Air Permit No. 5064. For the purpose of compliance with this provision, a leak is detected if an instrument reading of 200 ppm or greater is measured above background in accordance with Method 21.
- h. Emissions from bulk liquids tanker/truck sampling area(s) must be collected by a device with a collection efficiency of at least 95 percent and vented to a control device with a VOC control efficiency of at least 90 percent. The permittee shall submit certification of construction/installation of the control device to the TCEQ in accordance with the requirements of <u>Provision II.A.6.</u>, within 120 days of the permit issuance date.
- i. Rolloffs containing waste must remain covered at all times during storage by a rubberized tarp, rigid cover, or a rigid, gasketed cover (vacuum boxes). The total number of rolloffs containing waste that are covered using a non-gasketed cover (e.g., tarped cover) shall not exceed 300 after the first year, 200 after the second year, and 130 after the third year of the permit issuance date. Rolloffs containing incineration residue wastes streams which have been certified to meet 40 CFR Part 268 treatment standards for hazardous organic compounds and waste streams known to contain only chemicals with a vapor pressure less than 0.1 mm Hg at 100 degrees Fahrenheit may be excluded from the rolloff limitation.
- j. The permittee shall demonstrate compliance with the metals feed rate limits and short-term emission rate limits specified in Tables V.H.3. and V.H.4. for Mercury and Thallium by conducting appropriate waste feed and emission sampling and analysis no later than 60 days after the date of completion for the initial comprehensive performance testing required by 40 CFR Part 63, Subpart EEE. An original and four copies of a test report providing the necessary data demonstrating compliance with this provision shall be forwarded to the Executive Director within 90 days after receipt of the sampling results. If changes to the operating conditions specified in this permit are needed to reflect the results of the test, a request for a permit modification or amendment pursuant to 30 TAC Section 305.69 or Section 305.62 shall be submitted with the test report.

I. <u>BOILERS</u>

Not Applicable.

J. <u>DRIP PADS</u>

Not Applicable.

[V.]

K. MISCELLANEOUS UNITS

Miscellaneous units and their approved waste types are shown in <u>Table V.K. – Miscellaneous Units</u>. The permittee is authorized to operate the miscellaneous units subject to the limitations contained in the permit application submittals referenced in <u>Provision I.B.</u> (Incorporated Application Materials), 40 CFR Part 264, Subpart X., and the following minimum conditions:

- 1. Trucks shall only be placed into the areas and shall only remain in the areas described by Permit Unit No. II.B.103 while preparing the waste for direct feed to the incinerator, while piping is being fitted in order to directly feed waste into the appropriate incinerator process, while feeding the waste into an incinerator process, and while removing piping. Each of these activities must be performed so as to minimize the amount of time that the truck is in the direct burn area.
- 2. Each miscellaneous unit shall be provided with secondary containment systems which meet the following minimum requirements:
 - a. The secondary containment systems shall have a sloped base or shall be otherwise designed or operated to drain and remove liquids resulting from leaks, spills, or precipitation unless the containers are elevated or are otherwise protected from contact with accumulated liquids.
 - b. The secondary containment systems shall be maintained free of cracks or gaps and must be sufficiently impervious to contain leaks, spills, or precipitation until the collected material is detected and removed.
- 3. A container holding hazardous waste must always be closed except when it is necessary to add or remove waste.
- 4. Containers (55-gallon) shall be stacked no greater than two containers high. Other containers shall be stacked no higher than the equivalent height of two 55-gallon containers.
- 5. Inspection aisles, at least two (2) feet wide, shall be maintained so that each row of containers has an adjacent aisle space to allow for the inspection of each container.
- 6. Pallets, which are capable of supporting the intended load, shall be placed between stacked layers of containers.
- 7. The permittee shall maintain a fifty-foot buffer zone between containers that store ignitable or reactive waste and the property boundary.
- 8. The permittee shall separate containers holding hazardous wastes which are incompatible with other containerized wastes by means of a dike, berm, wall, or other impermeable barrier.

[V.]

L. CONTAINMENT BUILDINGS

Not Applicable.

PERMIT SECTION VI – GROUNDWATER DETECTION MONITORING

A. GROUNDWATER MONITORING PROGRAM

The permittee shall design, construct and maintain a ground-water monitoring program to monitor area ground water throughout the active life of the facility and any post-closure care period. Groundwater monitoring at the facility shall at a minimum consist of a Detection Monitoring System for the permitted units noted in <u>Provision VI.A.1.</u>. The Detection Monitoring System shall yield groundwater samples from the uppermost aquifer which is identified in <u>Provision VI.C.1.</u> that represent the quality of background water and the quality of ground water at the point of compliance.

1. <u>Identification of Detection Monitoring Program Units</u>

The Detection Monitoring Program is specific to the RCRA-regulated unit (East Landfill; Permit Unit No. 98) listed in <u>Table VI.B.3.b – Unit Groundwater Detection Monitoring System</u> and as authorized by <u>Provision V.G.1.c.</u> for which groundwater detection monitoring requirements apply pursuant to 30 TAC Section 335.164. Permit Units No. 1 and 2 authorized by <u>Provision V.G.1.a. and b.</u> are subject to the requirements of Compliance Plan No. 580089.

2. Capabilities of Detection Monitoring Systems

The Detection Monitoring System shall yield groundwater samples from the uppermost aquifer/water-bearing zone that represent the quality of background water that has not been affected by operation of the regulated unit(s) and that represent the quality of ground water passing the point of compliance. This system shall be capable of detecting a release from the regulated unit to the ground water.

3. Point of Compliance

The point of compliance for the Detection Monitoring System is defined by a vertical plane, located along the entire periphery of each permitted unit, that extends down into the uppermost aquifer/water bearing zone underlying the regulated unit.

4. <u>Detection Monitoring Program</u>

The permittee is required to install and operate a Detection Monitoring System subject to the limitations contained herein. The Detection Monitoring System wells for each unit/area are listed in <u>Table VI.B.3.b</u> <u>— Unit Groundwater Detection Monitoring System.</u>

a. A Detection Monitoring System shall, at a minimum, consist of two categories of wells, Primary and Supplemental Background and Point of Compliance Wells, which will be used to establish groundwater quality for each RCRA-regulated unit.

[VI.A.4.a.]

- (1) Background Wells are those wells that are unaffected by the operations of the unit. The Background Wells are depicted on the maps in Attachment VI.B.3. of the Park B Application (East Landfill Monitor Well Locations) and are also listed in Table VI.B.3.b Unit Groundwater Detection Monitoring System.
- (2) Point of Compliance (POC) Wells are used to demonstrate compliance with the Detection Monitoring Parameters which are depicted on the maps in Attachment VI.B.3. of the Part B application (East Landfill Monitor Well Locations) and are also listed in Table VI.B.3.b. Unit Groundwater Detection Monitoring System.
- b. The permittee shall determine groundwater quality in the uppermost aquifer throughout the active life of the facility and any post-closure care period in accordance with the parameter list and sampling schedule specified in <u>Provisions VI.C.2.</u> and <u>VI.D.2.</u>, respectively.
- c. The design, construction, maintenance and operation of the authorized components of the Detection Monitoring Program must be in accordance with this permit and approved Part B Permit Application Section VI.B., which is incorporated into this permit through permit Provision I.B..

B. CONSTRUCTION, CERTIFICATION, AND PLUGGING

Wells shall be constructed and maintained so groundwater samples are representative of the aquifer's water quality. A record of drilling and construction details demonstrating compliance with the terms of this permit section shall be prepared in accordance with Attachment E (Well Design and Construction Specifications). Wells constructed prior to issuance of this permit may be utilized as groundwater monitoring wells if they meet the standards of Attachment E (Well Design and Construction Specifications).

1. Well Construction

- a. For all groundwater monitor wells to be constructed in accordance with this permit, the permittee shall notify the Executive Director to report the proposed monitor well location and screened interval at least thirty (30) days in advance of the anticipated date of installation or in accordance with an approved schedule for installation. Alternatively, a schedule for installation issued as part of an approved work plan shall constitute such notification. New well construction shall commence upon written approval of the Executive Director within the timeframes specified in this permit.
- b. The permittee shall install the wells of the Detection Monitoring System and submit certification of this installation within sixty (60) days of installation, as described in Attachment E (Well Design and Construction Specifications). The Detection Monitoring Wells shall be installed in accordance with the schedule outlined in Attachment E (Well Design and Construction Specifications).

[VI.B.]

2. Replacement Wells

Prior to installation of a replacement well, the permittee shall submit to the Executive Director for approval, the replacement will specifications and an explanation of why the well is being replaced. For any Detection Monitoring System well to be considered a replacement well and not a new well, the well shall have no design changes from the well being replaced; shall be drilled within fifteen (15) feet of the well being replaced; and shall be installed in accordance with this Provision and Attachment E (Well Design and Construction Specifications).

3. Well Management Activities Requiring Permit Modification

- a. If the permittee or the Executive Director determines that the well integrity, materials of construction, or well placement no longer enable a well to yield samples representative of groundwater quality from the desired aquifer(s), then the permittee shall submit a permit modification or amendment request to the Executive Director in accordance with the provisions of 30 TAC Sections 305.62 and 305.69, respectively, describing actions the permittee will take to remedy the situation. The permittee shall also notify the Executive Director within fifteen (15) days of such determination regarding a well.
- b. The permittee shall submit a permit modification or amendment request to the Executive Director in accordance with the provisions of 30 TAC Sections 305.62 and 305.69, respectively, when new POC or Background Wells are to be constructed after issuance of this permit (i.e., if the wells have not been included in the approved Park B Permit Application materials referenced in permit <u>Provision I.B.</u>).
- c. The permittee shall submit a permit modification or amendment request, for installation of a new well, to the Executive Director in accordance with the provisions of 30 TAC Sections 305.62 and 305.69, respectively, when any wells being replaced do not meet the requirements of Provision VI.B.2.for a replacement well.

4. Plugging and Abandonment Procedures

- a. If a Detection Monitoring Well listed in <u>Table VI.B.3.b</u> <u>Unit Groundwater Detection Monitoring System</u> is plugged and abandoned and a replacement well is not installed in accordance with this permit, then a modification request shall be submitted in accordance with 30 TAC Section 305.69 within 90 days of the plugging and abandonment procedure to update <u>Table VI.B.3.b.</u> <u>Unit Groundwater Detection Monitoring System</u> of the permit.
- b. For all wells to be plugged and abandoned after issuance of this permit, the permittee shall follow the procedures specified in Attachment E (Well Design and Construction Specifications).

[VI.B.4.]

- c. The following existing supplemental monitoring wells shall be plugged in accordance with <u>Provision VI.B.4.b.</u> prior to construction of the East Landfill cells indicated below:
 - (1) Supplemental monitoring well MW-314.1 prior to construction of cell 1 of the East Landfill;
 - (2) Supplemental monitoring well MW-310.1 prior to construction of cell 2 of the East Landfill;
 - (3) Supplemental monitoring well MW-305.1 prior to construction of cell 4 of the East Landfill.

C. DETECTION MONITORING SYSTEM: OPERATION

- 1. <u>Uppermost Aquifer/Water-Bearing Zone Monitored by the Detection Monitoring System</u>
 The Detection Monitoring System shall be designed to monitor the ground water in the uppermost aquifer/water-bearing zone. The term uppermost aquifer, as referenced by this permit, refers to significant transmissive strata in Zone 1/2, Zone 1/1A, and Zone 3, which are identified below, according to Section IV. (Geology Report) of the Part B application. Significant transmissive strata are defined herein as strata composed of soils which have a Unified Soil Classification of GW, GP, GM, GC, SW, SP, or SM, or a hydraulic conductivity greater than 1 x 10⁻⁵ cm/sec and which exceed two (2) feet in thickness.
 - Zone 1/2 is the strata identified in the application as separate Zones 1 and 2 in the application which consist of interbedded lenticular deposits of gray and tan silty and sandy clay, clayey silt, sandy silt and clayey sand and which occur between the approximate elevation range of the surface at 25 feet above mean sea level (MSL) to 5 feet above MSL with some discontinuous sandy and clayey silt lenses to a depth of 20 feet below MSL,
 - Zone 1/1A Zone 1A consists of channel deposits that are incised into Zones 2 and 3. Zone 1A deposits consist of loose to firm deposits of sandy silt, sandy clay, silty sand, clayey sand, sand and clay.
 - Zone 3 consists of interbedded lenticular deposits of gray and tan sandy clay, clayey silt, silty sand and clayey sand with thin seams of fine sand. Zone 3 which is also described in the permit application as Stratum 3 varies in thickness from 13 to 28 feet, the top of which occurs between the approximate elevation range of 20 feet below mean sea level (MSL) to 40 feet below MSL.

[VI.C.]

2. Groundwater Detection Monitoring Parameters and Compliance

- a. [30 TAC Section 335.164(1)] The permittee shall monitor wells listed in <u>Table VI.B.3.b.</u> <u>Unit Groundwater Detection Monitoring System</u>. The uppermost aquifer's groundwater quality shall be evaluated based on the parameters listed in <u>Table VI.B.3.c.</u> <u>Groundwater Sample Analysis</u>. Sampling and analysis for the Groundwater Detection Monitoring Parameters of <u>Table VI.B.3.c.</u> shall be conducted in accordance with analytical methods listed in the United States Environmental Protection Agency publication SW-846 <u>Test Methods for Evaluating Solid Waste</u>, Third Edition, November 1986, (U.S.EPA SW-846) and as listed in July 8, 1987 edition of the Federal Register and later editions.[30 TAC Section 335.164(1)]
- b. Background groundwater quality for a monitoring parameter or constituent shall be based on a sequence of at least four samples, taken at an interval that assures, to the greatest extent technically feasible, that an independent sample is obtained. The permittee shall determine the concentrations of the detection monitoring parameters and water quality parameters listed in <u>Table VI.B.3.c.</u> <u>Groundwater Detection Monitoring Parameters</u> for each sample collected.
- c. Compliance with the Groundwater Detection Monitoring Parameters listed in <u>Table VI.B.3.c</u> is defined by the results of the data evaluation of <u>Provision VI.D.4.</u> wherein the groundwater monitoring data for each well does not exhibit evidence of contamination over background values. If any POC Well is determined to be noncompliant with <u>Table VI.B.3.c.</u> <u>Groundwater Detection Monitoring Parameters</u> at any time during the Detection Monitoring Program, the permittee shall respond and report according to <u>Provision VI.E.1.</u>.

3. Post-Closure Care Period

The regulated unit(s) listed in <u>Provision VI.A.1.</u> which are subject to detection monitoring shall remain in the Detection Monitoring Program during the active life of the unit(s) and during any applicable Post-Closure Care Period. After closure activities are completed for a specified unit and certification of closure is received by the Executive Director, any applicable Post-Closure Care Period shall begin. If the Post-Closure Care Period has expired and a Statistically Significant Increase (SSI) of the Groundwater Detection Monitoring Parameters of <u>Table VI.B.3.c.</u> has not been confirmed in the ground water, then the permittee shall notify the Executive Director in writing at least 30 days prior to discontinuing the Detection Monitoring Program for the specified unit. Within 90 days of the notification, the permittee shall submit a final report to the Commission for the specified unit. The final report shall include the information required by the annual report of <u>Provision VI.G.</u>.

[VI.C.]

4. <u>Waste Management of Recovered Groundwater</u>

- a. Recovered ground water from a Detection Monitoring Well may be managed as uncontaminated unless the permittee determines that a <u>Table VI.B.3.c.</u> <u>Groundwater Detection Monitoring Parameter</u> has an SSI over background values.
- b. Recovered ground water with known contamination which exceeds the <u>Table VI.B.3.c.</u>

 <u>— Groundwater Detection Monitoring Parameters</u> shall be managed as contaminated water.

D. SAMPLING AND ANALYSIS

1. <u>Sampling and Analysis</u>

The permittee shall follow the methods set out in EPA's RCRA Groundwater Monitoring Draft Technical Guidance Document (November 1992) or an alternate method approved by the Executive Director to collect and preserve samples withdrawn from groundwater monitoring wells. The collected samples shall be managed (i.e., Chain of Custody and handling procedure), analyzed, and statistically evaluated (i.e., Quality Assurance/Quality Control (QA/QC)) in accordance with the current edition of U.S. EPA Publication SW-846, Test Methods for Evaluating Solid Waste and American Society for Testing and Materials (ASTM) Standard Test Methods or other equivalent methods accepted by the Executive Director.

- a. All groundwater analyses required by this permit shall be performed by a laboratory that uses a QA/QC program where all information, data, and resulting decisions are technically sound, statistically valid, and properly documented. All QA/QC program details shall be put in writing and assignments made to qualified personnel. At a minimum, the laboratory shall conform to the QA/QC program details described in the current edition of U.S. EPA Publication SW-846, Test Methods for Evaluating Solid Waste and American Society for Testing and Materials (ASTM) Standard Test Methods or other equivalent methods accepted by the Executive Director.
- b. Groundwater analyses required by this permit shall utilize laboratory methods which are capable of measuring concentrations equal to or less than established background values.
- c. Wells shall be sampled according to the Sampling and Analysis Plan (SAP) presented in approved Part B Application Section VI, which is hereby incorporated into this permit by reference. The Permittee or the Executive Director shall propose modifications, as necessary, to the SAP in order to achieve the Detection Monitoring Program objectives. Any and all revisions to the plan shall become conditions of this permit at the beginning of the next full quarter after approval by the Executive Director.

[VI.D.]

2. Sampling and Analysis Frequencies and Parameters

- a. Frequencies of sampling shall be monthly, quarterly, semiannually or yearly, depending on the sampling objective. These periods of time are defined below:
 - (1) "Month" shall be a calendar month;
 - (2) "Quarter" shall be based on division of the calendar year (i.e., January through March, April through June, July through September, October through December);
 - (3) "Semiannual" shall be based on divisions of the calendar year (i.e., January through June, July through December) and consist of two consecutive quarters;
 - (4) "Annual" or "Year" shall be four consecutive quarters, beginning with the first quarter. Years shall be designated consecutively, beginning with the "first year", "second year", etc.; and,
 - (5) "Calendar year" shall be based on divisions of the calendar (i.e. January through December).
- b. Sampling of wells shall commence during the first complete quarter after issuance of this permit, or during the first quarter of operation if the permit is issued for a new unit. Samples shall be collected during the first thirty (30) days of the specified sampling frequency.
- c. In the first and subsequent years of the Detection Monitoring Program, the wells of <u>Table VI.B.3.b. Unit Groundwater Detection Monitoring System</u> shall be sampled and analyzed according to the schedule listed in <u>Table VI.B.3.c.</u>
- d. Field determination requirements for wells listed in <u>Table VI.B.3.b Unit Groundwater</u> <u>Detection Monitoring System</u> consist of the following measurements or observations which shall be established during each sampling event:
 - (1) Water level measurements relative to Mean Sea Level measured to within 0.01 foot.
 - (2) Determination of pH, temperature, Specific Conductivity and Turbidity in nephelometric turbidity units (Note: Turbidity is only required is metals are being monitored in the GMDP in Table II), for each well.
 - (3) Descriptions of water sample appearance (clarity, color, etc.) shall be recorded.

[VI.D.2.d.]

- (4) The total depth of each well, which is not equipped with a dedicated pump, shall be measured during each sampling event. The total depth of each well equipped with a dedicated pump shall be measured when pumps are removed for maintenance. At a minimum, the wells with dedicated pumps will be measured for depth every 3 years. The measured total depth shall be compared to the total depth recorded on the well construction log. Should an analysis of the measured and the recorded total depth reveal that the well is silting in, the permittee shall perform such actions necessary (redevelopment, replacement, etc.) to enable the well to function properly.
- (5) All wells specified in this permit shall be inspected during each sampling event. Repairs or a proposal for replacement for any affected well shall be performed within (90) days of the routine sampling event inspection which identified the problem well.

3. Statistical Procedures for Data Evaluation

- a. For each POC Well sampled during each sampling event, the permittee shall determine whether there is evidence of an SSI in the concentrations of each Groundwater Detection Monitoring Parameter of <u>Table VI.B.3.c.</u>, when compared to the Background Well groundwater quality data. In determining whether or not an SSI has occurred for a Groundwater Detection Monitoring Parameter of <u>Table VI.B.3.c.</u> the permittee shall establish if the background values have been exceeded by utilizing the statistical procedures and data evaluation described in the following guidance:
 - (1) <u>Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Interim Final Guidance</u>, U.S. EPA, April 1989; and
 - (2) <u>Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Addendum to Interim Final Guidance</u>, U.S. EPA, June 1992.
- b. The statistical procedures that shall be used to determine if an SSI has occurred over background valves in accordance with the approved statistical procedure described in Groundwater Monitoring Program of Section VI of the Part B Application for the East Landfill (Permit Unit No. 98) identified in <u>Provision VI.A.1</u>. To employ the approved statistical procedure, the permittee is required to collect a minimum of two (2) samples from each Background and POC Wells during each semi-annual sampling event.
- c. If it is determined that the selected statistical procedure is not appropriate to conduct data evaluation for a specified unit, then the permittee shall select an alternate statistical procedure. Prior to using a statistical procedure which is different than the one identified in Provision VI.D.3.b. the permittee shall obtain approval from the Executive Director through a permit amendment or modification as specified in 30 TAC Sections 305.62 and 305.69, respectively.

[VI.D.]

4. Data Evaluation

- a. Data evaluations shall be completed within (60) days of the sampling date unless QA/QC procedures show that data is unacceptable and re-analysis or resampling must be performed. In such cases, the Executive Director will be notified as soon as it becomes apparent that the 60-day time limit to conduct data evaluation cannot be met.
- b. Data evaluation shall determine whether there is evidence of an SSI for Groundwater Detection Monitoring Parameters listed in <u>Table VI.B.3.c.</u> each time groundwater quality is determined at the POC in accordance with 30 TAC Section 335.163(7).

E. RESPONSE REQUIREMENTS FOR SSI

- 1. If the permittee has determined an SSI over background values for any of the Groundwater Monitoring Parameters identified in <u>Table VI.B.3.c.</u>, in accordance with statistical procedures authorized by <u>Provision VI.D.3.</u> and specified by the permittee, the permittee shall perform the following actions;
 - a. Notify the Executive Director in writing, within seven (7) days. The notification must indicate which Groundwater Detection Monitoring Parameter(s) of <u>Table VI.B.3.c.</u> has exhibited an SSI.
 - b. Immediately sample the ground water in all wells of <u>Table VI.B.3.b.</u> <u>Unit Groundwater Detection Monitoring System</u> which exhibit an SSI for the specified unit and determine whether constituents of Appendix IX of 40 CFR 264 are present, and if so, in what concentrations.
 - c. For any Appendix IX hazardous constituent found in the analysis pursuant to <u>Provision VI.E.1.b.</u>, the permittee may resample for hazardous constituents within one month and repeat the analysis for those compounds detected. If the results of the second analysis confirm the initial results, then these detected constituents will form the basis for a Compliance Monitoring Program. If the permittee does not resample for the constituents found pursuant to <u>Provision VI.E.1.b.</u>, the hazardous constituents found during the initial Appendix IX analysis will form the basis for the Compliance Monitoring Program.
 - d. Upon establishing that a release has occurred from a unit(s), the permittee shall submit to the Executive Director a permit amendment or modification to modify the Detection Monitoring Program and a compliance plan application to initiate a Compliance Monitoring Program and/or a Corrective Action Program for the specified unit(s). The permit and compliance plan applications must be submitted based on the following schedule:

[VI.E.1.d.]

- (1) If ground water downgradient of the specified unit does not exceed the requirements in 30 TAC Section 335.158 for the proposed groundwater protection standard (GWPS), then within ninety (90) days, the permittee shall submit a permit amendment and a compliance plan application to establish a Compliance Monitoring Program for the specified unit;
- (2) If ground water downgradient of the specified unit exceeds the requirements in 30 TAC Section 335.158 for the proposed GWPS requested in the application for a specified unit, and an Alternate Concentration Limit (ACL) is not being proposed in the application in accordance with 30 TAC Section 335.160(b) to establish the GWPS, then within 180 days, the permittee shall submit a permit amendment or modification and a compliance plan application to establish a Corrective Action Program for specified unit.
- (3) If ground water downgradient of the specified unit exceeds the requirements in 30 TAC Section 335.158 for the proposed GWPS requested in the application for a specified unit, and an ACL is being proposed in the application in accordance with 30 TAC Section 335.160(b) to establish the GWPS, then within 180 days, the permittee shall submit a permit amendment or modification and a compliance plan application with an ACL demonstration to establish a Corrective Action Program for the specified unit.
- 2. If the permittee determines that there is an SSI above (or for pH, a statistically significant variation from) background values for the Groundwater Detection Monitoring Parameters specified in Table VI.B.3.c., the permittee may demonstrate a source other than the RCRA-regulated unit caused the increase or that the increase resulted form error in sampling, analysis, or evaluation. In such cases, the permittee shall perform the following actions:
 - a. Notify the Executive Director in writing within seven (7) days that the permittee intends to make a demonstration.
 - b. Within ninety (90) days, submit a report to the Executive Director which demonstrates that a source other than a RCRA-regulated unit caused the increase, or that the increase resulted from error in sampling, analysis, or evaluation.
 - c. Submit to the Executive Director an application for a permit amendment or modification and a compliance plan application to make any appropriate changes to the Detection Monitoring Program at the facility. The applications shall be submitted in accordance with <u>Provision VI.E.1.d.</u>.
 - d. Continue to monitor ground water in accordance with the Detection Monitoring Program at the facility.

[VI.]

F. REVISED DETECTION MONITORING PROGRAM

If the permittee of the Executive Director determines that the Detection Monitoring Program no longer satisfies the requirements of 30 TAC Section 335.164, the permittee must, within ninety (90) days of either the permittee's determination or Executive Director's notification, submit a permit amendment or modification request to make any appropriate changes to the Detection Monitoring Program which will satisfy with the regulations.

G. ANNUAL DETECTION MONITORING REPORTING REQUIREMENTS

The permittee shall submit an Annual Detection Monitoring Report which shall include the following information determined since the previously submitted report:

- 1. A statement whether an SSI has occurred over background values in any well during the previous calendar year period and the status of any SSI events.
- 2. The permittee shall include the results of all monitoring, testing, and analytical work obtained or prepared pursuant to the requirements of this permit, including a summary of background groundwater quality values, groundwater monitoring analyses, statistical calculations, graphs and drawings.
- 3. The groundwater flow rate and direction in the uppermost aquifer. The groundwater flow rate and direction of ground water flow shall be established using the data collected during the preceding calendar year's sampling events from the monitoring wells of the Detection Monitoring Program. The permittee shall also include in the report all documentation used to determine the groundwater flow rate and direction of ground water flow.
- 4. A contour map of piezometric water levels in the uppermost aquifer based at a minimum upon concurrent measurement in all monitoring wells. All data or documentation used to establish the contour map should be included in the report.
- 5. Recommendation for any changes
- 6. Any other items requested by the Executive Director.

H. RECORD KEEPING REQUIREMENTS

- 1. The permittee shall enter all monitoring, testing, analytical, statistical test computation data in evaluating groundwater monitoring data, and inspection data obtained or prepared pursuant to the requirements of this permit, including graphs and drawings, in the operating record at the facility.
- 2. The operating record at the facility shall be made available for review by the staff of the Commission upon request.

PERMIT SECTION VII – CLOSURE AND POST - CLOSURE REQUIREMENTS

A. FACILITY CLOSURE

1. The permittee shall follow the closure plan, developed in accordance with 40 CFR Part 264 Subpart G, 30 TAC Chapter 350, and contained in the permit application submittals identified in Provision I.B. (Incorporated Application Material).

Additionally, facility closure shall also commence:

- a. Upon direction of the TCEQ for violation of the permit, TCEQ Rules, or State Statutes; or
- b. Upon suspension, cancellation, or revocation of the terms and conditions of this permit concerning the authorization to receive, store, process, or dispose of waste materials; or
- c. upon abandonment of the site; or
- d. Upon direction of the TCEQ for failure to secure and maintain an adequate bond or other financial assurances as required by <u>Provision VII.B.1.</u>; or

2. Request for Permit Modification or Amendment

The permittee shall submit a written request for a permit modification or amendment to authorize a change in the approved Closure Plan(s), in accordance with 40 CFR 264.112 (c). The written request shall include a copy of the amended Closure Plan(s) for approval by the Executive Director.

3. Time Frames for Modification\Amendment Request Submittal

The permittee shall submit a written request for a permit modification or amendment in accordance with the time frames in 40 CFR 264.112 (c)(3).

4. <u>Closure Notice and Certification Requirements</u>

- a. The permittee shall notify the Executive Director, in writing, at least 60 days prior to the date on which he expects to begin partial or final closure of a surface impoundment, or landfill unit or final closure of a facility with such a unit; or at least 45 days prior to the days on which he expects to begin partial or final closure of a facility with processing or storage tanks, container storage, or incinerator units; or at least 45 days prior to the date on which he expects to begin partial or final closure of a boiler or industrial furnace, whichever is earlier. A copy of the notice shall be submitted to the TCEQ Regional Office.
- b. The permittee shall notify the TCEQ Regional Office at least ten (10) days prior to any closure sampling activity required by the permit in order to afford regional personnel the opportunity to observe these events and collect samples.

[VII.A.]

- 5. Unless the Executive Director approves an extension to the closure period, as per the requirements of 40 CFR 264.113(b), the permittee must complete partial and final closure activities within 180 days after receiving the final volume of hazardous wastes at the hazardous waste management unit or facility.
- 6. As per the requirements of 40 CFR 264.115, within 60 days of completion of closure of each permitted hazardous waste surface impoundment, or landfill unit, and within 60 days of the completion of final closure, the permittee shall submit to the Executive Director, by registered mail, with a copy to the TCEQ Regional Office, a certification that the hazardous waste management unit or facility, as applicable, has been closed in accordance with the specifications in the approved Closure Plan and this permit. The certification, which shall be signed by the permittee and by an independent licensed professional engineer, must be in the form described in Provision II.A.6.. A closure certification report shall be submitted with the required certifications which includes a summary of the activities conducted during closure and the results of all analyses performed. The certification report shall contain the information required by Provision II.A.6. and, as may be applicable, 30 TAC §350.32 (Texas Risk Reduction Program [TRRP] Remedy Standard A) and 30 TAC §350.33 (TRRP Remedy Standard B). Documentation supporting the independent registered professional engineer's certification shall be furnished to the Executive Director upon request until the Executive Director releases the permittee from the financial assurance requirements for closure under 40 CFR 264.143(i).
- 7. For each disposal unit closed after permit issuance, the permittee shall submit documentation to demonstrate compliance with 40 CFR 264.116 (relating to survey plat) and 264.119 (relating to post-closure notices). Documentation to demonstrate compliance with survey plat requirements must be submitted to the TCEQ at the time of submission of the certification of closure. Documentation to show compliance with post-closure notices must be submitted to the TCEQ no later than 60 days after certification of closure.
- 8. Final closure is considered complete when all hazardous waste management units at the facility have been closed in accordance with all applicable closure requirements so that hazardous waste management activities under 40 CFR Part 264 and 265 are no longer conducted at the facility unless subject to the provisions in 40 CFR 262.34.
- 9. All units, sumps, pumps, piping and any other equipment or ancillary components which have come in contact with hazardous wastes shall either be decontaminated by removing all waste, waste residues, and sludges or be disposed of in a manner authorized at this facility or disposed of at an authorized off-site facility.
- 10. All contaminated equipment/structures, liners, dikes, and soils (i.e., debris) intended for land disposal shall be treated in a manner whish meets or exceeds the treatment standards for hazardous debris contained in 40 CFR 268.45 or removed and managed at an authorized industrial solid waste management facility.

[VII.A.]

- 11. All hard-surfaced areas within the hazardous waste management unit areas shall be decontaminated and the wash water generated treated and/or disposed of in a manner authorized at this facility or at an authorized off-site facility.
- 12. Verification of decontamination shall be performed by analyzing wash water, and as necessary, soil samples for the hazardous constituents which have been in contact with the particular item being decontaminated. In addition, the permittee shall perform visual inspections of the equipment/structures for visible evidence of contamination.
- 13. Unless it can be demonstrated that soil contamination is unlikely to have occurred, soils shall be sampled and analyzed. Sufficiently detailed analyses of samples representative of soils remaining in non-hard-surfaced areas of the storage and processing facility area shall be performed to verify removal or decontamination of all waste and waste residues.
- 14. Soil and/or wash-water samples shall be analyzed in accordance with the methods specified in the current editions of "Test Methods for the Evaluation of Solid Waste" (SW-846) or other methods which are officially recommended by the EPA.
- 15. Decontamination shall be deemed complete when no visible evidence of contamination is observed and when the results form verification sampling and analyses indicate wash water concentrations and/or soil concentrations are below the applicable critical PCL for Remedy Standard A. If the underlying soils are decontaminated or removed to the PCL for Remedy Standard A, Commercial/Industrial Land use, the permittee shall comply with the institutional controls requirements of 30 TAC Section 350.111 as required.

B. FINANCIAL ASSURANCE FOR CLOSURE

1. The permittee shall provide financial assurance for closure of all existing permitted units covered by this permit in accordance with the form outlined in 40 CFR Part 264, Subpart H in an amount not less than \$11,924,766 as shown on <u>Table VII.E.1. – Permitted Unit Closure Cost Summary</u>. Financial assurance shall be secured and maintained in compliance with 30 TAC Chapter 37, Subchapter P, 335.152(a)(6) and 335.171. Financial assurance is subject to the following:

a. Adjustments to Financial Assurance Amount:

(1) At least 60 days prior to management of waste in proposed permitted units listed in <u>Table VII.E.1</u>, the permittee shall increase the amount of financial assurance required for closure by the amounts listed in <u>Table VII.E.1</u>. and shall submit additional financial assurance documentation.

[VII.B.1.a.]

The amount of financial assurance for closure of existing units, as listed in <u>TableVII.E.1</u>, may be reduced (if the financial assurance has previously been increased in accordance with <u>Provision VII.A.(1)</u>) upon certification of closure of an existing permitted unit, in accordance with <u>Provision VII.A.4.</u> (Closure Notice and Certification Requirements), and upon written approval of the Executive Director.

b. Inflation Factor Correction

Financial assurance for closure, including any adjustments after permit issuance, shall be corrected for inflation according to the methods described by 30 TAC §37.131 and §37.141.

2. The permittee shall submit to the Executive Director, upon request, such information as may be required to determine the adequacy of the financial assurance.

C. <u>STORAGE PROCESSING, COMBUSTION, AND MISCELLANEOUS UNIT CLOSURE REQUIREMENTS</u>

The permittee shall close the storage, processing, and combustion units identified as in Tables V.B., V.C., V.H.1, and V.K. in accordance with the approved Closure Plans, 40 CFR Part 264, Subpart G, 40 CFR 264.178 (container storage), 264.197 (tanks), 264.351 (incinerators), 264 Subpart X (miscellaneous unit), and the Texas Risk Reduction Program of 30 TAC Chapter 350 and the following requirements.

- 1. If all contaminated soils cannot be removed or decontaminated to TRRP Remedy Standard A, the permittee shall close the tank system and perform post-closure care in accordance with the closure and post-closure requirements for landfills, 30 TAC §335.152(a)(5) and 30 TAC Chapter 350, Subchapter. A Contingent Closure and Post-Closure Plan must be submitted no later than 60 days (Closure Plan) or 90 days (Post-Closure Care Plan) form the date that the permittee or the Executive Director determines that the hazardous waste management unit must be closed as a landfill, subject to the requirements of 30 TAC 335.174, or no later than 30 days (Closure Plan) from that date if the determination is made during partial or final closure. Within 30 days of determining that the tank system must be closed as a landfill, the permittee shall submit a permit modification for closure and post-closure as a landfill.
- 2. Until Executive Director accepts certification both by the permittee and an independent licensed professional engineer submitted for Permit Units No. 5-8, these units remain subject to closure and financial assurance requirements of this permit.

D, SURFACE IMPOUNDMENT CLOSURE REQUIREMENTS

Not Applicable.

[VII.]

E. LANDFILL CLOSURE AND CERTIFICATION REQUIREMENTS

The permittee shall close the landfills identified as TCEQ Permit Unit No. 2 (North Landfill) and No. 98 (East Landfill) in accordance with the approved Closure Plan, 40 CFR Part 264, Subpart G, 40 CFR 264.310, TRRP Remedy Standard B of 30 TAC Chapter 350 Subchapter B, 30 TAC Section 335.174, and the following requirements:

- 1. At least 120 days prior to commencing final closure of the landfills listed in <u>Provision VII.E.</u> above, the permittee shall submit to the TCEQ an Affected Property Assessment Report (APAR), and a Response Action Plan (RAP) report in accordance with the requirements of 30 TAC Sections 350.91 and 94 for review and approval by the Executive Director.
- 2. Subject to the requirements of <u>Provision VII.E.1.</u>, the permittee shall close each landfill cell using a final cover as follows:
 - a. An interim cap consisting of a minimum of a two (2) foot thick layer of compacted clay-rich material meeting the material and compaction specifications of <u>Provision V.G.3.b.</u>. This layer shall be sloped upwards from the perimeter of the landfill at greater than 3.0% and less than 5.0% to a crown in the center of the landfill. The cover shall be maintained free of gully erosional features and vegetation.
 - b. Interim cover shall be applied continuously during landfill operation progressing continuously as the waste material reaches the grade specified in the Part B permit application.
- 3. The permittee shall install the remaining final cover according to specifications in the Part B permit application and the following procedures:
 - a. For the East Landfill, a minimum three (3) foot thick layer of compacted clay-rich soil meeting the construction, material and compaction specifications of <u>Provision V.G.3.b.</u>. This layer shall be sloped upwards from the perimeter of the landfill at greater than 3.0% and less than 5.0% to a crown in the center of the landfill.
 - b. For the North Landfill, a minimum of two (2) foot (including 1-foot of interim cover) thick layer of compacted clay-rich soil meeting the construction, material and specifications of <u>Provision V.G.3.b.</u>, overlying a geosynthetic clay liner (GCL) with a permeability of $5x10^{-9}$ cm/sec or less. This layer shall be sloped upwards from the perimeter of the landfill Cell 5 and 6 stability dike extensions at greater than 3.0% and less than 5.0% to a crown in the center of the landfill.
 - c. For both the North and East Landfills, a continuous layer of 60 mil HDPE geomembrane shall be installed on the compacted clay-rich soil cover and shall be secured in an anchor trench at the perimeter dikes. The installation of the geomembrane shall be in accordance with the applicable requirements of Provision V.G.3.c..

[VII.E.3.]

- d. For both the North and East Landfill, a drainage layer consisting of a geocomposite (8-oz non-woven geotextile thermally bonded to both sides of geonet) or a geosynthetic drainage net overlain by a protective geotextile filter fabric having a minimum transmissivity of $3x10^{-5}$ m²/sec shall be installed over the geomembrane.
- e. For both the North and East Landfills, a layer of uncompacted fertile cover soil not less than twenty four (24) inches thick shall be placed over the geocomposite layer. The topsoil shall be seeded with a mixture of persistent native grasses to establish a self-sustaining vegetative cover. The 24 inches of cover soil shall be sloped upwards from the perimeter of the landfill to the center of the landfill at greater than 3% and less than 5% and shall consist of the following two components:
 - i) A minimum of six (6) inches of top soil consisting of a clay loam material (USDA designation C1; USCS designation CL); and
 - ii) Eighteen (18) inches of fill consisting of sandy clay material (USDA designation SC; USCS designation CH)
- f. For both the North and East Landfills, drainage structures shall be constructed around the landfill cell perimeter, along the dikes, in accordance with the specifications in the Part B permit application, and, as necessary, in other parts of the facility to promote drainage, prevent ponding, minimize surface water infiltration into the landfill cell, and minimize erosion of the landfill cell cover and perimeter containment levee.
- 4. After completion of the interim cover and final cover for a landfill cell, the permittee shall submit certification of proper construction of the cap in accordance with <u>Provision II.A.6.</u>. Each final cover certification shall be accompanied by a certification report which contains the results of all tests performed to verify proper construction. The permittee shall conduct whatever tests, inspections, or measurements are necessary in the judgment of the professional engineer for the engineer to certify that the landfill cap has been constructed in conformance with the design and construction specifications of this permit. The certification report shall, at a minimum, contain the following engineering plans and test results:
 - a. Scaled plain-view and east-west and north-south cross-sections which accurately depict the area boundaries and dimensions of the cover; surrounding natural ground surface elevation; minimum, maximum, and representative elevations of the base on which the interim cover was placed; minimum, maximum, and representative elevations of the upper surface of the interim and final covers; thickness, extent, and materials of component parts of the cover system.
 - b. For the compacted clay-rich soil, all tests required and at the frequency specified for constructed soil liners in <u>Provisions V.G.3.b.</u>. Soil moisture content determinations shall be performed on the interim cover during construction at a rate of at least one (1) a month and within 24 hours of installing the final cover.

[VII.E.4.]

c. For the HDPE liner:

All tests required as specified in Provision V.G.3.c..

d. For the sand drainage layer:

All tests required and at the frequency specified for the leachate collection drainage layer in Provision V.G.3.d..

e. For the topsoil layer:

Thickness determinations at a rate of at least one (1) determination by appropriate surveying techniques per every 10,000 square feet of topsoil placed.

- 5. The Permittee shall install a permanent benchmark at each corner of all closed landfill cells at the site within six (6) months after closure.
- 6. The Permittee shall install and maintain a permanent type of identification on all leachate riser pipes at the site denoting the landfill cell number as specified on "Attachment D" of this permit, and designation as primary or secondary leachate collection systems.
- 7. Within 60 days of completion of closure of each cell in the landfill, the Permittee shall submit to the Executive Director documentation demonstrating compliance with 40 CFR Part §264.119, pertaining to deed recordation.
- 8. Within 60 days of completion of closure of each landfill cell, the Permittee shall submit, as may be applicable, the Response Action Completion Report (RACR), and any additional information as required in 40 CFR Part 264, Subpart G, and by <u>Provision VII.E.</u> to the Executive Director certifying that the landfill has been closed in accordance with the specifications in the approved closure plan as required by 40 CFR §264.115.

F. CONTAINMENT BUILDINGS CLOSURE REQUIREMENTS

This section is not applicable to this facility.

G. FACILITY POST-CLOSURE CARE REQUIREMENTS

For each hazardous waste management unit which is closed as a landfill, the permittee shall conduct post-closure care of the unit for a period of at least 30 years after certification of closure of each respective unit. The post-closure period for each closed unit is specified in <u>Table VII.G – Post-Closure Period</u>. Post-closure care shall be performed in accordance with the Post-Closure Plans referenced in <u>Provision I.B.</u>, 40 CFR 264.117, and the following requirements:

1. Maintain all storm water conveyance structures in good functional condition.

[VII.G.]

- 2. Maintain the cover on Permit Units No. 1, 2, and 98, such that the cover promotes drainage, prevents ponding, minimizes surface water infiltration, and minimizes erosion of the cover. Any desiccation cracks, erosion, gullying, or other damage shall be repaired upon observance.
- 3. Maintain a self-sustaining vegetative cover on the capped areas by periodic seeding, fertilizing, irrigation, and/or mowing.
- 4. Maintain all benchmarks at the facility.
- 5. Maintain the facility perimeter fence, manned or locked gates, and warning signs in good functional condition.
- 6. Ensure that all entrances to the facility have manned or locked gates.
- 7. Ensure that the TCEQ has access to the facility.
- 8. Prepare and submit the Biennial Report required by <u>Provision II.B.7.</u>.
- 9. Perform all ground-water monitoring and related activities specified in Compliance Plan 50089 (for Permit Units No. 1 and 2) and in <u>Provision VI.A.1.</u> of the permit (For Permit Unit No. 98).
- 10. Submit as may be applicable, the Post-Response Action Care Plan required by 30 TAC 350.33(k).
- 11. The permittee shall collect and remove pumpable liquids in the leak detection system sumps to minimize the head on the bottom of the liner.
- 12. All liquids removed from the leak detection systems shall be managed as hazardous waste.
- 13. The permittee shall maintain a record of the amount of liquids removed from each leak detection system sump at least monthly during the post-closure period.
- 14. The permittee may record the amount of liquids removed from the each leak detection system sump quarterly or semi-annually during the post-closure period, after the final cover is installed, provided that the liquid level in the sump stays below the pump operating level for two consecutive months or quarters, respectively.
- 15. If at any time during the post-closure care period the pump operating level is exceeded at units on quarterly or semi-annual recording schedules, the permittee shall return to monthly recording of amounts of liquids removed from each leak detection system sump until the liquid level again stays below the pump operating level for two consecutive months.

[VII.G.]

- 16. The permittee shall determine if all the action leakage rate specified for Permit Unit No. 98 in <u>Table V.G.1</u> has been exceeded by converting the monthly flow rate from the monitoring data obtained under <u>Provisions VII.G.13</u>. to an average daily flow rate (gallons per acre per day) for each sump. The permittee shall calculate the average daily flow rate for each sump on a monthly basis during the post-closure care period.
- 17. If the action leakage rate is exceeded at any time during the post-closure period, the permittee shall perform the following minimum activities:
 - a. Notify the Executive Director in writing of the exceedence within seven (7) days of the determination;
 - b. Submit a preliminary written assessment to the Executive Director within fourteen (14) days of the determination, as to the amount of liquids, likely sources of liquids, possible location, size, and cause of any leaks, and short-term actions taken and planned;
 - c. Determine to the extent practicable the location, size and cause of any leak;
 - d. Determine whether any waste should be removed from the unit for inspection, repairs, or controls;
 - e. Determine any other short-term and longer-term actions to be taken to mitigate or stop any leaks; and
 - f. Within 30 days after the notification that the action leakage rate has been exceeded, submit to the Executive Director the results of the analyses specified in Provisions VII.G.17.c., d., and e. the results of actions taken, and actions planned. Monthly thereafter, as long as the flow rate in the leak detection system exceeds the action leakage rate, the permittee shall submit to the Executive Director a report summarizing the results of any remedial actions taken and actions planned.
- 18. To make the leak and/or remediation determinations in <u>Provisions VII.G.16.c.d.</u>, and <u>f.</u> the permittee shall:
 - a. Assess the source of liquids and amounts of liquids by source;
 - b. Conduct a fingerprint, hazardous constituent, or other analyses of the liquids in the leak detection system to identify the source of liquids and possible location of any leaks, and the hazard and mobility of the liquid; and
 - c. Assess the seriousness of any leaks in terms of potential for escaping into the environment; or
 - d. Document why such assessments are not needed.

[VII.G.]

19. General Post-Closure Requirements

Request for Permit Modification or Amendment

The permittee shall submit a written request for a permit modification or amendment to authorize a change in the approved Post-Closure Plan(s) in accordance with 40 CFR 264.118(d)(2). The written request shall include a copy of the amended Post-Closure Plan(s) for approval by the Executive Director.

<u>Time Frames for Modification/Amendment Request</u>

The permittee shall submit a written request for a permit modification or amendment in accordance with the time frames in 40 CFR 264.118 (d)(3).

20. <u>Post-Closure Notice and Certification Requirements</u>

No later than 60 days after completion of the established post-closure period for each unit, the owner or operator shall submit to the Executive Director, by registered mail with a copy to the TCEQ Regional Office, a certification that the post-closure period for the unit was performed in accordance with the specifications of the approved Post-Closure Plan and this permit. The certification shall be signed by the permittee and a licensed professional engineer. Documentation supporting the independent licensed professional engineer's certification must be furnished to the Executive Director upon request until the Executive Director releases the owner or operator from the financial assurance requirements for post-closure under 40 CFR 264.145 (i).

H. POST-CLOSURE FINANCIAL ASSURANCE REQUIREMENTS

- 1. The permittee shall provide financial assurance for post-closure care of all existing units required by this permit in an amount no less than \$5,234,159 as shown on <u>Table VII.E.2.</u> <u>Permitted Unit Post Closure Cost Summary</u>. Financial assurance shall be secured and maintained in compliance with 30 TAC Chapter 37 Subchapter P, 335.152(a)(6) and 335.179.
 - a. At least 60 days prior to management of waste in proposed permitted units listed in <u>Table VII.E.2</u>, the permittee shall increase the amount of financial assurance required for closure by the amounts listed in <u>Table VII.E.2</u>. and shall submit additional financial assurance documentation.

b. Inflation Factor Correction

During the active life of each disposal unit or unit required to have contingent post closure care, financial assurance for post-closure care shall be corrected for inflation according to the methods described by 30 TAC §37.131 and §37.141.

2. The permittee shall submit to the Executive Director, upon request, such information as may be required to determine the adequacy of the financial assurance.

PERMIT SECTION VIII – LIABILITY REQUIREMENTS

A. SUDDEN AND NONSUDDEN ACCIDENTAL OCCURRENCES

- 1. The permittee shall demonstrate continuous compliance with the requirements of 30 TAC Chapter 37, Subchapter P, and §335.152(a)(6) to maintain liability coverage for sudden and accidental occurrences of at least \$1 million per occurrence, with an annual aggregate of at least \$2 million, exclusive of legal defense costs.
- 2. The permittee also shall demonstrate continuous compliance with the 30 TAC Chapter 37, Subchapter P, and §335.152(a)(6) requirement to have and maintain liability coverage for nonsudden accidental occurrences in the amount of at least \$3 million per occurrence, with an annual aggregate of at least \$6 million, exclusive of legal defense costs.
- 3. The permittee may combine the required per-occurrence coverage levels for sudden and nonsudden accidental occurrences into a single per-occurrence level, and combine the required annual aggregate coverage levels for sudden and nonsudden accidental occurrences into a single annual aggregate level. Owners or operators who combine coverage levels for sudden and nonsudden accidental occurrences shall maintain liability coverage in the amount of at least \$4 million per occurrence and \$8 million annual aggregate.

B. <u>INCAPACITY OF OWNERS OR OPERATORS, GUARANTORS, OR FINANCIAL</u> INSTITUTIONS

The permittee shall comply with 40 CFR 264.148, regarding bankruptcy, whenever necessary.

PERMIT SECTION IX – CORRECTIVE ACTION FOR SOLID WASTE MANAGEMENT UNITS

Reserved – Corrective Action for Solid Waste Management Units are addressed through the facility Compliance Plan.

PERMIT SECTION X – AIR EMISSION STANDARDS

A. <u>PROCESS VENTS AND EQUIPMENT LEAKS</u>

- 1. Emissions from this facility must not cause or contribute to a condition of "Air Pollution" as defined in Section 382.003 of the Texas Health and Safety Code Ann. or violate Section 382.085 of the Texas Health and Safety Code Ann. If the Executive Director of the TCEQ determines that such a condition or violation occurs, the permittee shall implement additional abatement measures as necessary to control or prevent the condition or violation.
- 2. Requirements for Subpart AA and BB
 - a. The permittee must comply with the requirements of 30 TAC Sections 335.152(a)(17)/40 CFR Part 264 Subpart AA and 30 TAC Section 335.152(a)(18)/40 CFR Part 264 Subpart BB, as applicable.

[X.A.2.]

- b. The permittee shall include in the Biennial Report, required in Provision II.B.7., a statement that hazardous waste management units or associated ancillary equipment at this facility are not subject to any of the requirements in <u>Provision X.A.2.a.</u>, if these requirements are not applicable to any hazardous waste management units or associated ancillary equipment at this facility. If at any time any hazardous waste management units or associated ancillary equipment become subject to the requirements in <u>Provision X.A.2.a.</u>, the permittee must immediately comply with these requirements.
- c. Requirements for Subpart CC

The permittee must comply with the requirements of 40 CFR Part 264 Subpart CC, as applicable.

PERMIT SECTION XI – LIST OF ATTACHMENTS

- A Legal Description of Facility
- B Facility Map
- C List of Incorporated Application Materials
- D List of Permitted Facility Units
- E Well Design and Construction Specifications
- F Compounds Detrimental to HDPE Liners
- G Waste Constituents Subject to TCEQ Air Quality Headspace Analysis Limitations

TABLE III.D INSPECTION SCHEDULE

Facility Unit(s) and Basic Elements	Possible Error, Malfunction, or Deterioration	Frequency of Inspection
Closed South Landfill (Permit Unit 01)	 Cap: Deterioration, cracks, cave-in, ponding Banks: Deterioration, cracks, cave-in Run-On/Run-Off Control Systems: Deterioration, malfunction, improper operation Leachate Collection/Removal System: Presence of leachate, improper operation 	Weekly and After Storms
Active North Landfill (Permit Unit 02) East Landfill (when constructed) (Permit Unit 98)	 Cap: Deterioration, cracks, cave-in, ponding Banks: Deterioration, cracks, cave-in Run-On/Run-Off Control Systems: Deterioration, malfunction, improper operation Leachate Collection/Removal System: Presence of leachate, improper operation Leak Detection System: Amount of liquids removed 	Weekly and After Storms Weekly (During the Active Life and Closure Period); Monthly (After Closure)
Train I and Train II Incinerators (Permit Unit 03 and 04)	 Pumps, Valves, Piping, air pollution control equipment: Presence of leaks, spills, fugitive emissions, evidence of tampering CO and O₂ CEMS: Calibration check and system audit Automatic Waste Feed Cutoff and Alarms: Operation malfunction CO and O₂ CEMS: calibration error test CO and O₂ CEMS: calibration drift test, response time test, and alternative relative accuracy test 	 Daily Weekly (When burning hazardous waste) Quarterly Annual Daily (calibration drift test)

TABLE III.D INSPECTION SCHEDULE (CON'D)

Facility Unit(s) and Basic Elements	Possible Error, Malfunction, or Deterioration	Frequency of Inspection
Container Storage Areas (Permit Units 76a-h, 77-79, 90-92, 101,104,105)	 Wet spots in loading and unloading areas Leaks, seeps, wet spots in other areas Labels legible Containment integrity Container deterioration 	Daily Weekly
Tanks (Permit Units 09-31, 37-41, 44-46, 87-89, 93-96 and 100)	 Overfill Control Equipment: Deterioration, clogging, sticking, alarm malfunction Instrumentation: Alarms and level devices verified Foundation: Cracks, settlement, erosion, wet spots Structural Support: Cracks, deterioration, damage Piping Connections: Deterioration, cracks, leaks Protective Coating: Rust spots, blisters Tank Exterior: Cracks, Deterioration, damage, buckles, bulges, leaks Containment: Cracks, erosion, deterioration Sump Area: Cracks, settlement, erosion, wet spots Secondary Containment: Leak detection system Pumps: Leaks, deterioration, power supply Piping: Leaks, deterioration Valves: Leaks, deterioration Structural Supports: Deterioration, cracks, damage Leak Collection/Removal System: Presence of liquids, improper operation Corrosion Protection System: Operation malfunction and/or deterioration Tank Shell: Thinning, pitting, weld attack Tank Shell: Structural integrity 	 Daily Weekly Annually * First year and every 5 yrs. thereafter

TABLE III.D INSPECTION SCHEDULE (CON'D)

Facility Unit(s) and Basic Elements	Possible Error, Malfunction, or Deterioration	Frequency of Inspection
Miscellaneous Units Pug Mill (Permit Unit 97) PCB Shredder (Permit Unit Number 106)	 Control Equipment: Deterioration, clogging, sticking, alarm malfunction Instrumentation: Alarms and level devices verified Foundation: Cracks, settlement, erosion, wet spots Structural Support: Cracks, deterioration, damage Connections: Deterioration, cracks, leaks Unit Exterior: Cracks, Deterioration, damage, buckles, bulges, leaks Containment: Cracks, erosion, deterioration Sump Area: Cracks, settlement, erosion, wet spots Secondary Containment: Leak detection system Structural Supports: Deterioration, cracks, damage Leak Collection/Removal System: Presence of liquids, improper operation Corrosion Protection System: Operation malfunction and/or deterioration Unit Shell: Thinning, pitting, weld attack Unit Shell: Structural integrity 	 Daily Weekly ► Annually * Annually First year and every 5 yrs. Thereafter

TABLE III.D INSPECTION SCHEDULE (CON'D)

Facility Unit(s) and Basic Elements	Possible Error, Malfunction, or Deterioration	Frequency of Inspection
Miscellaneous Units	Wet spots in loading and unloading areas	• Daily
Railcar Unloading Pad (Permit Unit 99) Container QC Area (Permit Unit 102)	◆ Leaks, seeps, wet spots in other areas	♦ Weekly
Direct Burn Pads (Permit Unit 103)	♦ Labels legible	·
	◆ Containment integrity	
	◆ Container deterioration	
General Facility: Emergency Response/Safety Equipment	Alarm systems: Power failure, verified	Monthly
Response/Sarety Equipment	• Emergency Eyewash/Showers: Water pressure, leakage, drainage	► Monthly/after use
	• Self-Contained Breathing Apparatus: Tank empty, delivery system, quantity	
	➤ Respirators/Gas Masks: Seals, valves, appropriate quantity and sizes	
	► Fire extinguishers	
Security • Fence: Breach, damage		Monthly
	Gates: Damage, operable	
	Warning Signs: Deterioration, missing, legible	

TABLE III.E.2 EMERGENCY EQUIPMENT

Equipment	Location	Physical Description	Capabilities
Fire Extinguishers	Landfill	10,20,30-lb, Class ABC	Extinguish small fires
Safety Shower/Eye Wash Station	y Shower/Eye Wash Landfill Emerge		Personnel Decontamination
Fire Extinguishers	Administration Building	10,20,30-lb, Class ABC	Extinguish small fires
Fire Extinguishers	Laboratory	10,20,30-lb, Class ABC	Extinguish small fires
Safety Shower/Eye Wash Station	Laboratory	Emergency shower and eye wash station	Personnel Decontamination
Scott Air Pack	Laboratory	Cyl. With 30 min. of air supply	Entry to specific areas
5 Min. Escape Pack	Laboratory	5 minute unit	Escape
Fire Extinguishers	S & E Building	10,20,30-lb, Class ABC	Extinguish small fires
Safety Shower/Eye Wash Station	S & E Building	Emergency shower and eye wash station	Personnel Decontamination
Fire Extinguishers	Process Area	10,20,30-lb, Class ABC	Extinguish small fires
Safety Shower/Eye Wash Station	Process Area	Emergency shower and eye wash station	Personnel Decontamination
Scott Air Pack	Process Area	Cyl. With 30 min. of air supply	Entry to specific areas
5 Min. Escape Pack	Process Area	5 minute unit	Escape
Spill Response Equip.	Process Area	Varies	Contain & clean spills

TABLE III.E.2 EMERGENCY EQUIPMENT (CONT'D)

Equipment	Location	Physical Description	Capabilities
Pumper Truck	On-Site	Foam/water Pumper – 5 man cab	1500 gpm pump – 1250 gpm deck gun, 500 gallons foam – 1000 gallons water, 1000 feet 5" hose plus 500 feet 2.5" hose, 300 feet 1.5" reconnects
Emergency Response Truck	On-Site	4 wheel drive ¾ ton	6 person cab, front winch – rear hoist, 6 SCBA and 6 spare bottles, First aid and rescue equipment
Emergency Response Truck	On-Site	Ford Pickup – 4 passenger	CIMA, SK, Mutual Aid Radio, Cellular phone, Emergency support documentation and equipment
First Aid Room	On-Site		A complete TRAUMA kit (bandaging supplies, splints, cold packs, air way devices), non- prescription medications and ointments, back board
Fire Extinguishers	Plant Wide	10,20,30-lb, Class ABC	Extinguish small fires
Safety Shower/Eye Wash Station	Plant Wide	Emergency shower and eye wash station	Personnel Decontamination
Scott Air Pack	Plant Wide	Cyl. With 30 min. of air supply	Entry to specific areas

TABLE III.E.2 EMERGENCY EQUIPMENT (CONT'D)

Equipment	Location	Physical Description	Capabilities
5 min. Escape Pack	Plant Wide	5 minute unit	Escape
Emergency Communication System	Plant Wide	Code horns accessed by plant phone system	Alerts personnel of location of fire or spill
Plant Radio System	Plant Wide		Communication with personnel
Portable, Hand Held Radios	Plant Wide		For communication purposes
Intercom	Plant Wide	Phones/Speakers	Communications
Fire Extinguishers	Operations Building	10,20,30-lb, Class ABC	Extinguish small fires
Scott Air Pack	Operations Building	Cyl. with 30 min. of air supply	Entry to specific areas

TABLE IV.B WASTES MANAGED IN PERMITTED UNITS

No.	Waste	EPA Hazardous Waste Numbers	TCEQ Waste Form Codes and Classification Codes
1	Plant Refuse / Office Trash	None	9032
2	Lab Waste	All acceptable EPA waste numbers*	009Н
3	PCB Contaminated Truck Washings	None	2191
4	Water Treatment Sludge (Filter Cake)	All acceptable EPA waste numbers except D001-D003*	504H
5	Leachate	F039	116H
6	Incinerator Ash	All acceptable EPA waste numbers except D001-D003*	303H
7	Lubricating Oil	None	2061
8	Hazardous Sludges – Tank Cleanouts	All acceptable EPA waste numbers*	695H
9	Spent Solvents	F001-F005	204H
10	Liquid, Listed Hazardous, Combustible, Flammable, Corrosive	F001-F005	219Н
11	PCB Transformers	None	3961
12	Construction Debris	None	3903
13	PCB Contaminated PPE/Spill Cleanup	None	3941
14	PCB Contaminated Containers	None	3081
15	Scrubber Blowdown Process Wastewater	All acceptable EPA waste numbers except D001-D043*	115H
16	RCRA – Empty Crushed Drums	None	3081
17	PCB Coupling, Capacitors, Bushings	None	397H
18	Wooden Pallets	None	4882

TABLE IV.B WASTES MANAGED IN PERMITTED UNITS

No.	Waste	EPA Hazardous Waste Numbers	TCEQ Waste Form Codes and Classification Codes
19	Tellerettes	None	4031
20	Spent Carbon	D001	404H
21	Recovered Groundwater	F039	116H
22	Stabilized Incineration Residuals	All acceptable EPA waste numbers except D001-D043*	303H
23	Stormwater Runoff	None	1191
24	PCB Decontamination Water	None	1141
25	RCRA Decontamination Washwater (Active Landfill)	All acceptable EPA waste numbers except D001-D043*	114H
26	Construction Debris	None	3902
27	Contaminated Construction Debris	All acceptable EPA waste numbers*	319H
28	RCRA Decontamination Washwater (Mix Building)	All acceptable EPA waste numbers*	219H
29	Contaminated PPE, Spill Cleanup, Satellite Accumulation Waste	All Acceptable EPA waste numbers*	319Н
30	Recovered Groundwater	None	1191
31	Tellerette Rinsate All acceptable EPA waste numbers except D001-D003*		119H

TABLE IV.B WASTES MANAGED IN PERMITTED UNITS

No.	Waste ¹	EPA Hazardous Waste Numbers	TCEQ Waste Form Codes and Classification Codes
101	Inorganic Liquids	All permitted EPA waste numbers	H, 1, 2, 3
102	Organic Liquids	All permitted EPA waste numbers	H, 1, 2, 3
103	Water-based Sludges	All permitted EPA waste numbers	H, 1, 2, 3
104	Inorganic Sludges	All permitted EPA waste numbers	H, 1, 2, 3
105	Organic Sludges	All permitted EPA waste numbers	H, 1, 2, 3
106	Inorganic Solids	All permitted EPA waste numbers	H, 1, 2, 3
107	Organic Solids	All permitted EPA waste numbers	H, 1, 2, 3
108	PCB Wastes ²	N/A	N/A
109	Contaminated Gases	All permitted EPA waste numbers	H, 1, 2, 3
110	Contaminated Soils	All permitted EPA waste numbers	H, 1, 2, 3
111	Incinerator Ash	All permitted EPA waste numbers	H, 1, 2, 3
112	Dioxin Wastes	F020, F021, F022, F023, F026, F027, F028	H, 1, 2, 3

¹includes both on-site and off-site wastes ²PCB's or non-hazardous industrial solid waste contaminated only with PCB's

Waste No. ¹	Sampling Location ²	Sampling Method ³	Frequency	Parameter ⁴	Test Method ³	Desired Accuracy Level ⁷
101 102	Truck sampling rack Railcar area Warehouse Tank farm	COLIWASA, tubing, thief, or sampling valve (for tank samples)	One per shipment or blend/batch unless exempted by WAP.	Fingerprint analyses: Physical description pH / water reactivity Ignitability screen Viscosity Radioactivity screen	ASTM D4979 SW-846 9045C ASTM D4982 ASTM D4212 Manufacturer manual	duplicates must match Ck Std ± 1.0 S.U. duplicates must match Ck Std ± 20% Source check must meet manufacturer specifications
	Direct Burn area QA/QC area			Process analyses for incineration: Heat of combustion Ash content Chlorides Metals Supplemental analyses: Specific gravity Bulk density Halogens Acid scrub Total organic carbon Reactive cyanides / sulfides, Organic screen by GCMS	ASTM D240 ASTM D5468 ASTM D5468 ASTM D2361 SW-846 9056 SW-846 6010B SW-846 7470A ————————————————————————————————————	Ck Std ± 5% Ck Std ±20% or Duplicates RPD =< 20% Ck Std ± 10% MS Recovery ± 10% MS Recovery ±25% MS Recovery ±25% Ck Std ± 0.1 Duplicates RPD =<20% MS Recovery ± 10% Duplicates RPD =<20% MS Recovery ± 20% Ck Std ± 15% MS recovery within lab limits* MS recovery within lab limits*

¹ From Table IV.B, first column

² These are the primary sampling locations only.

³ See WAP for additional methods.

⁴ Not all parameters apply to each sample. See WAP for more details

⁷ Ck Std – check standard; MS – matrix spike; RPD – relative percent difference *Organic methods QC sample recovery limits are analyte specific and are determined using EPA guidelines.

Waste No. ¹	Sampling Location ²	Sampling Method ³	Frequency	Parameter ⁴	Test Method ³	Desired Accuracy Level ⁷
103 104 105	Bin storage area Receiving area Warehouse Truck sampling rack QA/QC area	COLIWASA, tubing, or thief	One per shipment or blend/batch unless exempted by the WAP.	see waste #101 above	see waste #101 above	see waste #101 above
106 110 111	Bin storage area Receiving area Warehouse Truck sampling rack Railcar area QA/QC area	Tubing, thief, trier, auger, scoop, or shovel	One per shipment or blend/batch unless exempted by the WAP.	see waste #101 above If applicable: Process Analyses for landfill: Organic screening by GCMS TCLP metals Free liquids test ⁵	see waste #101 above above SW-846 8260B SW-846 8270C SW-846 1311 SW-846 6010B SW-846 7470A SW-846 9095	MS recovery within lab limits* MS recovery within lab limits* MS recovery within lab limits* Not applicable MS Recovery ± 25% MS Recovery ± 25% duplicates must match

¹ From Table IV.B, first column

² These are the primary sampling locations only.

³ See WAP for additional methods

⁴ Not all parameters apply to each sample. See WAP for more details

⁵ Free liquids test is rum on each bin if a visual inspection is inconclusive.

^{7;} MS – matrix spike; *organic methods QC sample recovery limits are analyte specific and are determined using EPA guidelines.

Waste No. ¹	Sampling Location ²	Sampling Method ³	Frequency	Parameter ⁴	Test Method ³	Desired Accuracy Level ⁷
107	Bin storage area Receiving area Warehouse Truck sampling rack Railcar area QA/QC area	Tubing, thief, trier, auger, scoop, or shovel	One per shipment or blend/batch unless exempted by the WAP.	see waste #101 above	see waste #101 above	see waste #101 above
108	Tank farm Direct burn area Receiving area PCB warehouse Truck sampling rack Railcar area QA/QC area	COLOWASA, Tubing, thief, trier, auger, scoop, or shovel	One per shipment or blend/batch unless exempted by the WAP.	see waste #101 above Plus: PCBs	see waste #101 above ASTM D4059	see waste #101 above MS Recovery ± 20%
112	Warehouse QA/QC area	COLOWASA, Tubing, thief, trier, auger, scoop, or shovel	One per shipment or blend/batch unless exempted by the WAP.	Fingerprint analyses: physical description pH/ water reactivity Ignitability screen Radioactivity screen	ASTM D4979 SW-846 9045C ASTM D4982 Manufacturer manual	duplicates must match Ck Std ± 1.0 S.U. duplicates must match Source check must meet manufacturer specifications

¹ From Table IV.B, first column

² These are the primary sampling locations only.

³ See WAP for additional methods.

⁴ Not all parameters apply to each sample. See WAP for more details

⁷ MS – matrix spike

Waste No. ¹	Sampling Location ²	Sampling Method ³	Frequency	Parameter ⁴	Test Method ³	Desired Accuracy Level ⁷
3,24	Truck sampling rack	COLIWASA or tubing	As needed	PCBs	ASTM 4059	MS Recovery ± 20%
4	Filter press area, bin storage area	Scoop, or shovel	1/quarter 3/ week 1/ bin or 1/ mix batch	Full Organic Analysis Volatile organics Semivol. organics Amenable cyanide Chlorinated herbicides Cyanide, total Dioxins/Furans Nonhalogenated organics Organochlorine pesticides PCB's Carbamates Organic Screening By GC or GCMS Volatile organics Semivol. organice TCLP metals Free liquids test ⁵	SW-846 8260B SW-846 8270C SW-846 9012A SW-846 9012A SW-846 8280A SW-846 8015B SW-846 8081A SW-846 8082 SW-846 8321A EL8021S EL8260S EL8080S EL8270S SW-846 6010B SW-846 7470A SW-846 9095	MS recovery within lab limits* MS Recovery ± 25% MS recovery within lab limits* MS Recovery ± 25% MS recovery within lab limits* Dot applicable MS Recovery ± 25% MS Recovery ± 25% Duplicates must match

¹ From Table IV.B, first column

² These are the primary sampling locations only.

³ See WAP for additional methods

⁴ Not all parameters apply to each sample. See WAP for more details

⁵ Free liquids test is run on each bin if a visual inspection is inconclusive.

⁷ MS – matrix spike; *organic methods QC sample recovery limits are analyte specific and are determined using EPA guidelines.

Waste No. ¹	Sampling Location ²	Sampling Method ³	Frequency	Parameter ⁴	Test Method³	Desired Accuracy Level ⁷
5	Leachate collection tanks	COLIWASA or Tubing	As needed	TOC Metals	EPA 415.1 SW-846 6010B SW-846 7470A	MS Recovery ± 20% MS Recovery ± 25% MS Recovery ± 25%
6	Rotary Reactor ash dropout 3.6m kiln ash dropout 4.4m kiln ash dropout Bin storage area	Scoop, or shovel	1/ quarter 1/bin ⁶ 1/bin or 1/ mix batch	Full Organics Analysis Organics Screening By GC or GCMS TCLP metals Free liquids test ⁵	See Waste #4 above See Waste # 4 above SW-846 1311 SW-846 6010B SW-846 7470A SW-846 9095	See Waste #4 above See Waste # 4 above Not applicable MS Recovery ± 25% MS Recovery ± 25% Duplicates must match
22	Bin storage area S&E Building	Scoop, or Shovel	1/ batch	TCLP metals	SW-846 1311 SW-846 6010B SW-846 7470A	Not applicable MS Recovery ± 25% MS Recovery ± 25%

¹ From Table IV.B, first column

² These are the primary sampling locations only.

³ See WAP for additional methods.

⁴ Not all parameters apply to each sample. See WAP for more details

⁵ Free liquids test is run on each bin if a visual inspection is inconclusive.

⁶ Volatile organics are run on one bin per day. Semivolatile organics are run on every bin except Rotary Reactor Ash which is run on one bin per day.

⁷ MS – matrix spike; *organic methods QC sample recovery limits are analyte specific and are determined using EPA guidelines.

Waste No. ¹	Sampling Location ²	Sampling Method ³	Frequency	Parameter ⁴	Test Method ³	Desired Accuracy Level ⁷
27	Point of generation	Scoop or shovel	1/ event	Volatile organics Semivol. Organics PCBs Plus either: Process analyses for	SW-846 8260B SW-846 8270C ASTM D4059	MS recovery within lab limits* MS recovery within lab limits* MS recovery within lab limits*
				incineration:	SW-846 6010B	MS Recovery ± 25%
				Heat of Combustion	SW-846 7471A ASTM D240	MS Recovery ± 25% Ck Std ± 5%
				Or:		
				Process analyses for landfill:		
				pH Ignitability screen TCLP metals	SW-846 9045C ASTM D4982 SW-846 1311 SW-846 6010B SW-846 7470A	Ck Std ± 1.0 S.U. Duplicates must match Not applicable MS Recovery ± 25% MS Recovery ± 25%
				Free liquids test ⁵	SW-846 9095	Duplicates must match

¹ From Table IV.B, first column

² These are the primary sampling locations only.3 See WAP for additional methods. Certain test methods have been modified as indicated in the WAP.

⁴ Not all parameters apply to each sample. See WAP for more details 5 Free liquids test is run on each bin if a visual inspection is inconclusive.

⁷ Ck Std – check standard; MS – matrix spike; *organic methods QC sample recovery limits are analyte specific and are determined using EPA guidelines.

TABLE V.B CONTAINER STORAGE AREAS

Permit Unit No.	Container Storage Area	N.O.R. Unit#	WASTE NUMBER*	Rated Capacity	Dimensions	STACKING HEIGHT	AISLE SPACING	Containment Volume (including rainfall for unenclosed areas) gallons	Unit will manage Ignitable, ¹ Reactive, ¹ or Incompatible ¹ Waste (state all that apply)
76a	DSP-1	36	101-107, 109-111	30,250 gal	30'x84.5' = 2535 sq ft	3 pallets	2 feet/4 feet**	6,084	Yes
76b	DSP-2	37	101-107, 109-111	37,060 gal	34'x114.25'=3885 sq ft	3 pallets	2 feet/4 feet**	13,088	Yes
76c	DSP-3	38	101-107, 109-111	113,870 gal	59.33'x125.62'=7453 sq ft	3 pallets	2 feet/4 feet**	13,991	Yes
76d	DSP-4	39	101-111	136,680 gal	irregular-4,708 sq ft	3 pallets	2 feet	15,198	Yes
76e	DSP-5	40	101-111	151,800 gal	irregular-6,993 sq ft	3 pallets	2 feet	28,137	Yes
76f	DSP-6	41	101-107, 109-111	170,000 gal	irregular-11,280 sq ft	3 pallets	2 feet	26,565	Yes
76g	DSP-7	42	101-111	19,800 gal	irregular-1,404 sq ft	3 pallets	2 feet	2,429	Yes
76h	Warehouse	43	101-111, 112	212,520 gal	irregular-12568 sq ft	4 pallets/racks	2 feet	64,761	Yes
77	Transformer/Drum handling Bldg.	34	101-111	163,980 gal	irregular-9,090 sq ft	3 pallets	2 feet	25,726	Yes
78	Container Storage Warehouse	7	101-107, 109-111	587,520 gal	22,963 sq ft	4 pallets/racks	2 feet/4 feet**	68,655	Yes
79ª	Tank Truck Storage Pad	168	101-111	71,500 gal	irregular-6,954 sq ft	1 bin or trailer	2 feet	56,766	Yes
90	BSA-1°	69	103-108, 110,111	1,500 Cubic yds	75'x350'=26,250 sq ft	3 bins or 1 trailer	2 feet	None	Yes
91	BSA-2 ^c	70	103-108, 110,111	4,650 Cubic yds	irregular-73,028 sq ft	3 bins or 1 trailer	2 feet	None	Yes
92	BSA-3 ^c	71	103-108, 110,111	1,650 Cubic yds	101 ¹ x317'=32,017 sq ft	3 bins or 1 trailer	2 feet	None	Yes
101 ^b	DSP-8	74	101-107, 109-111	23,700 gal	16.33'x87.91'=1,436 sq ft	3 pallets	2 feet	2,370	Yes
104	Front-line storage pad	035	101-111	60,500 gal	irregular-6,996 sq ft	1 bin or 1 trailer	2 feet	52,474	Yes
106	Waste Receiving Pad	167	103-107 110,111	212,100 gal	irregular-12,939 sq ft	1 bin or 1 trailer	2 feet	103,590	Yes

^{*}Waste Numbers From Table IV.B, includes both on-site and off-site generated wastes.

^{**} per NFPA Code

^aDrummed or other containerized wastes (except wastes stored in tank trailers) shall be stored on Permit Unit No. 79 for a maximum of 90 days and only if waste containers remain on trailers until such time as the containers are transferred to another permitted treatment, storage, or disposal unit.

^bContainerized waste shall only be placed into Permit Unit No. 101 while the Train I or Train II is operational and shall not be allowed to remain in Permit Unit No. 101 longer than 24 hours.

^cAll wastes must pass the paint filter test (EPA SW-846, Method 9095).

TABLE V.C TANKS AND TANK SYSTEMS

Permit Unit No.	Tank	N.O.R. Unit #	Storage and/or Processing	Waste No.s ¹	Rated Capacity ³	Dimensions	Containment Volume (including rainfall for unenclosed areas) Gallons	Unit Will Manage Ignitable, Reactive, or Incompatible Waste (State all that apply)
09	T-1	84	STORE	101,102,108	20,000 g	12'x25'6"	418,721	YES
10	T-2	85	STORE	101,102,108	24,000 g	13'x25'6"	418,721	YES
11	T-11	86	STORE	101,102,108	15,000 g	10'x25'6"	418,721	YES
12	T-12	87	STORE	101,102,108	15,000 g	10'x25'6"	418,721	YES
13	T-18	88	STORE	101,102,108	24,000 g	13'x25'6"	418,721	YES
14	T-19	89	STORE	101,102,108	20,000 g	12'x25'6"	418,721	YES
15	T-20	90	STORE	101,102,108	7,000 g	7'7 ½"x22'0"	418,721	YES
16	T-21	91	STORE	101,102,108	7,000 g	7'7 ½"x22'0"	418,721	YES
17	T-27	92	STORE	101,102,108	14,600 g	11'6"x18'	418,721	YES
18	T-28	93	STORE	101,102,108	14,600 g	11'6"x18'	418,721	YES
19	T-31	94	STORE	101,102,108	27,000 g	12'x32'	418,721	YES
20	T-32	95	STORE	101,102,108	27,000 g	12'x32'	418,721	YES
21	T-60	96	STORE	101,102,108	100,000 g	25'x27'6"	418,721	YES
22	T-61	97	STORE	101,102,108	2000,00 g	33'x32'	418,721	YES
23	V-101	21	STORE	101,102,108	10,000 g	8'x29'8"	418,721	YES

TABLE V.C TANKS AND TANK SYSTEMS (CONT'D)

Permit Unit No.	Tank	N.O.R. Unit #	Storage and/or Processing	Waste No.s ¹	Rated Capacity ³	Dimensions	Containment Volume (including rainfall for unenclosed areas) Gallons	Unit Will Manage Ignitable, Reactive, or Incompatible Waste (State all that apply)
24	V-103	22	STORE	101,102,108	10,500 g	8'x30'	418,721	YES
25	V-104	23	STORE	101,102,108	22,400 g	12'x26'	418,721	YES
26	V-105	98	STORE	101,102,108	22,400 g	12'x26'	418,721	YES
27	V-106	99	STORE	101,102,108	22,400 g	12'x26'	418,721	YES
28	V-107	100	STORE	101,102,108	22,400 g	12'x26'	418,721	YES
29	V-108	101	STORE	101,102,108	22,400 g	12'x26'	418,721	YES
30	V-109	102	STORE	101,102,108	21,000 g	10'x35'6''	418,721	YES
31	V-110	103	STORE	101,102,108	21,000 g	10'x35'6''	418,721	YES
37	T-29	109	STORE	101,102,108	6,400 g	7'3"x19'8"	27,590	YES
38	T-30	110	STORE	101,102,108	6,400 g	7'3"x19'8"	27.590	YES
39	T-70	111	STORE	101,102,108	22,200 g	10'4"x30'	418,721	YES
40	T-71	112	STORE	101,102,108	22,000 g	10'4"x30'	418,721	YES
41	T-72	113	STORE	101,102,108	22,000 g	10'4"x30'	418,721	YES
44	T-75	116	STORE	101,102,108	22,000 g	10'4"x30'	418,721	YES
45	T-76	117	STORE	101,102,108	22,000 g	10'4"x30'	418,721	YES

TABLE V.C TANKS AND TANK SYSTEMS (CONT'D)

Permit Unit No.	Tank	N.O.R. Unit #	Storage and/or Processing	Waste No.s ¹	Rated Capacity ³	Dimensions	Containment Volume (including rainfall for unenclosed areas) Gallons	Unit Will Manage Ignitable, Reactive, or Incompatible Waste (State all that apply)
46	T-77	118	STORE	101,102,108	22,000 g	10'4"x30'	418,721	YES
87	T-1001-1	81	STORE/PROCESS	101-107, 109-111	75 yd ³	41.8'x10'x7.9'	128,902	YES
88	T-1001-2	82	STORE/PROCESS	101-107, 109-111	75 yd ³	41.8'x10'x7.9'	128,902	YES
89	T-1001-3	83	STORE/PROCESS	101-107, 109-111	75 yd ³	Irregular	128,902	YES
93	V-1204	121	STORE	101-105	13,500 g	12'x4'	30,661	NO
94 ³	T-1202	122	STORE/PROCESS	101-107, 109-111	125 yd ³	29.2'x19.5'x5.9'	Double Walled	NO
95 ³	T-1203	123	STORE/PROCESS	101-107, 109-111	125 yd ³	29.2'x19.5'x5.9'	Double Walled	NO
96 ⁴	T-1204	124	STORE/PROCESS	101-107, 109-111	350 yd ³	58'x60'x7.5'	NONE-no liquid	NO
107	T-201	Proposed	STORE/PROCESS	101-108. 110-111	7,198 g	Irregular	22,986	IGNITABLE
109	T-33	Proposed	STORE/PROCESS	101-107	21,000 g	12' x 24'	51,212	YES

^{1 -} Waste Numbers From Table IV.B

^{2 -} In accordance with permit Provision VII.A.

^{3 –} Processing of wastes in Permit Units No. 94 or 95 is limited to a maximum of 60 working days annually, when Permit Unit No. 97 is out of service due to malfunction and/or regularly scheduled maintenance.

⁴⁻No chemical or biological processing of wastes is authorized in Permit Unit No. 96.

TABLE V.G.1. LANDFILLS

Permit Unit No.	Landfill	N.O.R. Unit#	Waste No.s ¹	Rated Capacity	Dimensions	Distance from lowest liner to groundwater	Action Leakage Rate (if required) ¹	Unit Will Manage Ignitable, Reactive, Incompatible, or F020, F021, F022, F023, F026, and F027 Waste (State all that apply)
	South							
01	(constructed)	001	N/A	1,500,000	1450 x 750'	10 feet (min)	NOT REQUIRED	NO
	North			815,000 cubic				
02	(constructed)	134	103-107, 109-111	yards	660 x 475	10 feet (min)	NOT REQUIRED	NO
	East			658,000 cubic	420' x 1430			
98	(proposed)	135	103-107, 109-111	yards	irregular'	10 feet (min)	500 gpad*	NO

¹from Table IV.B, first column

²If not required in accordance with 40 CFR 264.302, state "NOT REQUIRED"

^{*}gpad = gallon per acre per day.

TABLE V.G.3. LANDFILLS

			Primary Liner		Å	Secondary Line	r		Clay Liner	
Permit Unit No.	Landfill	Material	Permeability (cm/sec)	Thickness	Material	Permeability (cm/sec)	Thickness	Material	Permeability (cm/sec)	Thickness
01	North (constructed)	HDPE	≤ 1 x 10 ⁻⁷	60mil	HDPE	$\leq 1 \times 10^{-7}$	60mil	Clay	$\leq 1 \times 10^{-7}$	3 feet (min)
02	South (constructed)							Clay		5 feet (min)
98	East (proposed)	HDPE	≤ 1 x 10 ⁻⁷	60mil	HDPE	$\leq 1 \times 10^{-7}$	60mil	Clay	$\leq 1 \times 10^{-7}$	3 feet (min)

TABLE V.G.4. LANDFILL LEACHATE COLLECTION SYSTEM

	I	Primary Leac	hate Collecti	ion System			Secondary Lea	achate Collectio	on System	
Landfill	Drainage Media	Collection Pipes (including risers)	Filter Fabric	Geofabric	Sump Material	Drainage Media	Collection Pipes (including risers)	Filter Fabric	Geofabric	Sump Material
East			8 oz.					8 oz.		
(proposed)	Sand	8" HDPE	Geotextile	Geonet	Gravel	Sand	8" HDPE	Geotextile	Geonet	Gravel
North (constructed)	Sand	8" HDPE	8 oz. Geotextile	Geonet	Gravel	Sand	8" HDPE	8 oz. Geotextile	Geonet	Gravel
South (constructed)	Sand	8" HDPE			Gravel					

TABLE V.H.1 INCINERATORS

Permit Unit No.	Incinerator	N.O.R. Unit #	Waste No.s ¹	Waste Physical Form	Unit Will Manage Reactive, Incompatible, or F020, F021, F022, F023, f026, or F027 Waste (State all that apply)
03	Train I Kiln 3.6 m diameter Afterburner Loddby Liquids Burner	5	101-111	Liquids Solids Sludges Gases	Reactive
04	Train II Kiln 4.4 m diameter Afterburner Rotary Reactor	31	101-111	Liquids Solids Sludges Gases	Reactive

¹from Table IV.B, first column

Parameter	Monitoring Basis ¹ (State Instantaneous or Hourly Rolling Average (HRA)	Monitoring Device	Device Location	Permit Condition	Automatic Waste Feed Cutoff (Y/N) ²
OPERATING PARAM	METERS		T	T	1
Maximum Total Hazardous Waste Feed Rate Kiln I Afterburner I	HRA	FE-404 Liquid Tanks-27/28 and Waste liquid V-109/V-110 (load cell/Coriolis meter) FE-4244 Railcar Direct Burn (load cell/Coriolis meter) FE-4253 PCB Tanks-31/32 (load cell/Coriolis meter) WE-4275 High Pressure Cylinder (load cell/Coriolis meter) FCV-101 Direct-Burn Sludge FCV-102 " (Flow calculated by DCS FCV-201 " from cycle, volume FCV-202 " and density) WT-4031 Barrel Feeder (load cell/Coriolis meter) FE-202 Liquid Tanks 27/28, Low flash Pt. V-109 and V-110 and Liquid Tanks 29/30 (load cell/Coriolis meter) FE-302 Direct Burn Alkyls, Direct Burn Truck and PCB Tanks 31/32 (load cell/Coriolis meter) FE-502 Direct Burn Tank 29 (load cell/Coriolis meter) WT-902 Direct Burn Tank 29 (load cell/Coriolis meter)	Drawing No. H-006-PI-205-D H-006-PI-205-D H-006-PI-205-D H-006-PI-205-D H-006-PI-205-D " " H-006-PI-208-D H-006-PI-211-D H-006-PI-211-D H-006-PI-211-D H-006-PI-211-D H-006-PI-211-D	13,611 lb/hr (total) 14,349 lb/hr	Y
		WE-402 RI Truck Scale (load cell/Coriolis meter) FE-702 T/OX Railcar, T-Ox Tankfarm, T-Ox	H-006-PI-209-D		

Parameter	Monitoring Basis ¹ (State Instantaneous or Hourly Rolling Average (HRA)	Monitoring Device	Device Location	Permit Condition	Automatic Waste Feed Cutoff (Y/N) ²
		Tank – 18 and Direct Burn T-Ox (load cell/Coriolis meter) FE-802 T-Ox Railcar, T-Ox Tankfarm, T-Ox Tank 18 and Direct Burn T-Ox (load cell/Coriolis meter) WE-4311 Glove Box 1 WE-4321 Glove Box 2 WE-4331 Glove Box 3	H-006-PI-209-D H-006-PI-215-D H-006-PI-216-D H-006-PI-217-D		
Maximum Total Pumpable Hazardous Waste Mass Feed Rate	HRA See Table V.H.3.	N.A.	N.A.	N.A.	N.A.
Minimum Combustion Temperature Kiln I Afterburner I	Instantaneous Instantaneous	Thermocouple Thermocouple	Kiln Exit Kiln Exit	1618°F 1827°F	Y Y
Minimum Combustion Temperature Kiln I Afterburner I Maximum Flue Gas	Instantaneous Instantaneous N.A.	Thermocouple Thermocouple N.A.	Kiln Exit Kiln Exit N.A.	2049°F 2238°F N.A.	Y Y N.A.
Temperature at PM Control Device Inlet Maximum volumetric	(Wet Quench) Instantaneous	Annubar	Due to Stack		Y
feed rate, DSCFM (dry) Kiln I Loddby Liquids Burner Afterburner I				N.A. N.A. 55,604 DSCFM	
Atomization parameters	Instantaneous	Pressure Gauges	Local	> 5 psig	N

Parameter	Monitoring Basis ¹ (State Instantaneous or Hourly Rolling Average (HRA)	Monitoring Device	Device Location	Permit Condition	Automatic Waste Feed Cutoff (Y/N) ²
Particulate Matter Emission Rate	3-run average	Stack Test	Stack	<0.03 grains/dscf	N
Feed Rates: (Metals, Total Chlorine, and Ash)	HRA	Liquid Flow Meters, solids weigh scales, and compositions	Feed System	Limits Specified in Table V.H.3- Maximum Constituent Feed Rates	Y
Combustion Oxygen	Instantaneous	CEMS in situ	Hot Duct	N.A.	N
Stack CO (use same basis as for stack oxygen)	Instantaneous	CEMS	Sample of gas to stack	100 ppmv 7% O ₂ , dry basis	Y
Stack Total Hydrocarbons	N.A.	N.A.	N.A.	N.A.	N.A.
Number of Soot Blowing Events per 24 hours	N.A.	N.A.	N.A.	N.A.	N.A.

Parameter	Monitoring Basis ¹ (State Instantaneous or Hourly Rolling Average (HRA)	Monitoring Device	Device Location	Permit Condition	Automatic Waste Feed Cutoff (Y/N) ²
Combustion Zone Pressure [or other method for fugitive emissions monitoring]	See <u>Provision</u> V.H.7.j.	Pressure Indicator	Kiln Shrouds & Afterburner	Minimum 0" W.C.	Y
Air Pollution Control Dev	ice PARAMETER	RS			
Pressure drop across Baghouse [or fabric filter]	N.A.	N.A.	N.A.	N.A.	N.A.
[Wet Scrubbers:]					
Minimum Water Flows Saturator Condenser	Instantaneous Instantaneous	Volumetric Flow Meter Volumetric Flow Meter	Near Unit Near Unit	832 gpm 3,865 gpm	Y Y
Minimum liquid to flue Gas ration (L/G)	N.A.	N.A.	N.A.	N.A.	N.A.
Minimum scrubber blowdown	N.A.	N.A.	N.A.	N.A.	N.A.
Minimum Scrubber Water pH	N.A.	N.A.	N.A.	N.A.	N.A.

Parameter	Monitoring Basis ¹ (State Instantaneous or Hourly Rolling Average (HRA)	Monitoring Device	Device Location	Permit Condition	Automatic Waste Feed Cutoff (Y/N) ²
[Calvert Scrubbers:]					
Minimum Calvert water exit pH	Instantaneous	pH meter	water exit	4.0	N
Minimum Calvert water flow	Instantaneous	Volumetric Flow Meter	Near Unit	792 gpm	Y
Minimum differential pressure	Instantaneous	Dp gauge	On unit	41.22 in. W.C.	Y
[Dry Scrubbers:]					
Minimum alkaline reagent flow to the dry scrubber	N.A.	N.A.	N.A.	N.A.	N.A.
Maximum flue gas flow rate	N.A.	N.A.	N.A.	N.A.	N.A.
[Absorbers:]					
Absorber minimum pH of incoming liquid	N.A.	N.A.	N.A.	N.A.	N.A.

Parameter	Monitoring Basis ¹ (State Instantaneous or Hourly Rolling Average (HRA)	Monitoring Device	Device Location	Permit Condition	Automatic Waste Feed Cutoff (Y/N) ²	
Absorber minimum liquid to gas ratio (L/G)	N.A.	N.A.	N.A.	N.A.	N.A.	
OTHER MONITORING PARAMETERS						
Electric Power	Instantaneous			Power Outage	Y	
Fan Shutdown	Instantaneous			Fan Shutdown	Y	

$N.A.-Not\ Applicable$

- Instantaneous as defined in 40 CFR §266.102(e)(6)(i)(A) shall mean a value which occurs at any time. A value shall be determined by the monitoring device no less than every 15 seconds.
- Continuous monitor is one which continuously samples or measures the regulated parameter without interruption, and evaluates the detector response at least once each 15 seconds, and computes and records the average value at least every 60 seconds.
- Hourly Rolling Average (HRA) as defined in 40 CFR §266.102(e)(6)(i)(B).
- For carcinogenic metals and lead feed rates: Instantaneous as defined above or, rolling average as defined in 40 CFR §266.102(e)(6)(ii). AWFCO: Automatic Waste Feed Cutoff. For AWFCOs indicated by "Y", the Permit Limit in the table triggers an AWFCO.

TABLE V.H.2.(II) TRAIN II INCINERATOR PERMIT CONDITIONS, MONITORING, AND AUTOMATIC WASTE FEED CUTOFF SYSTEMS

Parameter	Monitoring Basis ¹ (State Instantaneous or Hourly Rolling Average (HRA)	Monitoring Device	Device Location	Permit Condition	Automatic Waste Feed Cutoff (Y/N) ²
OPERATING PARA	METERS				
Maximum Total Hazardous Waste Feed Rate Kiln II	HRA	WT-5020 Drum Conveyor (load cell/Coriolis meter) WT-5073 Box Scale (north)(load cell/Coriolis meter) WT-5470 Shredder Feed (load cell/Coriolis meter) FE-5200 Waste Liquid Tanks 27/28 V-109 and V-110 (load cell/Coriolis meter) FE-5100 Direct burn Trailers (load cell/Coriolis meter) FV-5301 Swap Pot (Sludge Flow calculated by DCS from cycle, volume and density) FE-5320 Direct Burn Truck (load cell/Coriolis meter) WE-4321 Glove Box	Drawing No. H-004-PI-201-D H-004-PI-203-D H-004-PI-214A-D H-004-PI-221-D H-004-PI-221-D H-004-PI-221-D	17,807 lb/hr	Y
Rotary Reactor	HRA	WT-7098 Contaminated Soil (load cell/Coriolis meter) FE-7304 Waste liquid Tanks 27/28 (load cell/Coriolis Meter) PD Pump (Sludge Flow calculated by DCS from cycle, volume and density) FE-7253 Direct Burn Truck (load cell/Coriolis meter) WE-7355 Direct Burn Truck (load cell/Coriolis meter)	H-007-PI-107-D H-107-PI-110-D H-007-PI-110-D H-007-PI-110-D H-007-PI-111-D	14,508 lb/hr	Y

TABLE V.H.2.(II) TRAIN II INCINERATOR PERMIT CONDITIONS, MONITORING, AND AUTOMATIC WASTE FEED CUTOFF SYSTEMS (CONT'D)

Parameter	Monitoring Basis ¹ (State Instantaneous or Hourly Rolling Average (HRA)	Monitoring Device	Device Location	Permit Condition	Automatic Waste Feed Cutoff (Y/N) ²
Afterburner II	HRA	FE-5250 Direct Burn Truck, Waste Liquid Tanks 27/28 and Low Flash V-109 and V-110 (load cell/Coriolis meter) WE-5600 X-406 Line (load cell/Coriolis meter) FE-5700 Direct Burn Truck RCRA Tank 29/30 (load cell/Coriolis meter) FE-5550 Alkyls (load cell/Coriolis meter) Waste Liquid Tank 27/28 Low Flash V-109 and V-110 (load cell/Coriolis meter) FE-5300 Low Flash V-110 Waste Liquid Tank 27/28 Direct Burn Truck RCRA Tank 29/30 (load cell/Coriolis meter) FE-5850 T-Ox (load cell/Coriolis meter) FE-5800 T-Ox (load cell/Coriolis meter)	H-004-PI-208-D H-004-PI-219-D H-004-PI-208-D H-004-PI-208-D H-004-PI-208-D H-004-PI-208-D H-004-PI-209-D H-004-PI-209-D	12,681 lb/hr	Y
Maximum Total Pumpable Hazardous Waste Mass Feed Rate	HRA See Table V.H.3.	N.A.	N.A.	N.A.	N.A.
Minimum Combustion Temperature Kiln II Rotary Reactor Afterburner II	Instantaneous Instantaneous Instantaneous	Thermocouple Thermocouple Thermocouple	Kiln Exit Gas Exit Hot Duct	1627°F 914°F 1785°F	Y Y Y

Parameter	Monitoring Basis ¹ (State Instantaneous or Hourly Rolling Average (HRA)	Monitoring Device	Device Location	Permit Condition	Automatic Waste Feed Cutoff (Y/N) ²
Maximum Combustion Temperature Kiln II Rotary Reactor Afterburner II	Instantaneous Instantaneous Instantaneous	Thermocouple Thermocouple Thermocouple	Kiln Exit Gas Exit Hot Duct	2374°F 1580°F 2240°F	Y Y Y
Maximum Flue Gas Temperature at PM Control Device Inlet	N.A. (Wet Quench)	N.A,	N.A,	N.A,	N.A,
Maximum volumetric flow rate, DSCFM (dry) Kiln II Rotary Reactor Afterburner II	Instantaneous	Annubar	Duct to Stack	N.A. N.A. 49,464 DSCFM	Y
Atomization parameters	Instantaneous	Pressure Gauges	Local	>5 psig	N
Particulate Matter Emission Rate	3-run average	Manual Stack Test	Stack	<0.03 grains/dscf	N
Feed Rates: (Metals, Total Chlorine, and Ash)	HRA	Liquid Flow Meters, solids weigh scales, and compositions	Feed System	Limits Specified in Table V.H.3- Maximum Constituent Feed Rates	\mathbf{Y}^2

Parameter	Monitoring Basis ¹ (State Instantaneous or Hourly Rolling Average (HRA)	Monitoring Device	Device Location	Permit Condition	Automatic Waste Feed Cutoff (Y/N) ²		
Stack Oxygen	Instantaneous	CEMS in situ	Hot Duct	N.A.	N		
Stack CO (use same basis as for stack oxygen)	Instantaneous	CEMS	Stack	100 ppmv 7% O ₂ , dry basis	Y		
Stack Total Hydrocarbons	N.A.	N.A.	N.A.	N.A.	N.A.		
Number of Soot Blowing Events per 24 hours	N.A.	N.A.	N.A.	N.A.	N.A.		
Combustion Zone Pressure [or other method for fugitive emissions monitoring	See <u>Provision</u> V.H.7.j.	Pressure Indicator	Afterburner	Minimum 0" W.C.	Y		
Air Pollution Control Device PARAMETERS							
Pressure drop across Baghouse [or fabric filter]	N.A.	N.A.	N.A.	N.A.	N.A.		
[Wet Scrubbers:]							

Monitoring Basis ¹ (State Instantaneous or Hourly Rolling Average (HRA)		Monitoring Device	Monitoring Device Device Location		
Minimum Water Flows Saturator Condenser	Instantaneous Instantaneous	Volumetric Flow Meter Volumetric Flow Meter	Near Unit Near Unit	727 gpm 4,019 gpm	Y Y
Minimum liquid to flue gas ratio (L/G)	N.A.	N.A.	N.A.	N.A.	N.A.
Minimum scrubber Blowdown	N.A.	N.A.	N.A.	N.A.	N.A.
Minimum scrubber Water pH	N.A.	N.A.	N.A.	N.A.	N.A.
[Calvert Scrubbers:]					
Minimum Calvert Water Exit pH	Instantaneous	pH meter	water exit	4.0	N
Minimum calvert Water flow	Instantaneous	Volumetric flow meter	Near Unit	820gpm	Y
Minimum differential pressure	Instantaneous	Dp gauge	On unit	45.08 in. W.C.	Y
[Dry Scrubbers:]					

Parameter	Monitoring Basis ¹ (State Instantaneous or Hourly Rolling Average (HRA)	Monitoring Device	Device Location	Permit Condition	Automatic Waste Feed Cutoff (Y/N) ²		
Minimum alkaline reagent flow to the dry scrubber	N.A.	N.A.	N.A.	N.A.	N.A.		
Maximum flue gas flow rate	N.A.	N.A.	N.A.	N.A.	N.A.		
[Absorbers:]							
Absorber minimum pH of incoming liquid	N.A.	N.A.	N.A.	N.A.	N.A.		
Absorber minimum liquid to gas ratio (L/G)	N.A.	N.A.	N.A.	N.A.	N.A.		
OTHER MONITORING PARAMETERS							
Electric Power	Instantaneous		Power Outage				
Fan Shutdown	Instantaneous		Fan shutdown	Y			

N.A. – Not Applicable

- Instantaneous as defined in 40 CFR §266.102(e)(6)(i)(A) shall mean a value which occurs at any time. A value shall be determined by the monitoring device no less than every 15 seconds.
- Continuous monitor is one which continuously samples or measures the regulated parameter without interruption, and evaluates the detector response at least once each 15 seconds, and computes and records the average value at least every 60 seconds.
- Hourly Rolling Average (HRA) as defined in 40 CFR §266.102(e)(6)(i)(B).
- For carcinogenic metals and lead feed rates: Instantaneous as defined above or, rolling average as defined in 40 CFR §266.102(e)(6)(ii). AWFCO: Automatic Waste Feed Cutoff. For AWFCOs indicated by "Y", the Permit Limit in the table triggers an AWFCO.

TABLE V.H.3 – MAXIMUM CONSTITUENT FEED RATES

The total feed rate of constituents to the Total Incinerator System (Train I plus Train II) shall not exceed the following limitations in grams per hour (g/hr) or tons per year (t/yr), as noted. The metals and pesticides/herbicides limitations have been evaluated through risk assessment. The ash and chlorine limits are based upon testing or regulatory limits.

Constituent (Tier) ²	Maximum Allowable Hourly Feed Rate In Total Feedstreams (g/hr)	Maximum Allowable Hourly Feed Rate In Total Hazardous Waste Feedstreams (g/hr)	Maximum Allowable Hourly Feed Rate In Total Pumpable Hazardous Waste Feed (g/hr) ^c	Maximum Allowable Annual Feed Rate In All Feed Streams (t/yr) ^c
Arsenic (risk assessment)	4.86E+03	4.86E+03	1.47E+03	4.69E+01
Beryllium (risk assessment)	6.48E+03	6.48E+03	1.96E+03	6.26E+01
Cadmium (risk assessment)	1.98E+03	1.98E+03	6.29E+03	1.91E+01
Chromium, Total (risk assessment)	3.17E+04	3.17E+04	1.16E+04	3.06E+02
Antimony (risk assessment)	3.96E+05	3.96E+05	9.05E+04	3.82E+03
Lead (risk assessment)	1.28E+05	1.28E+05	3.08E+04	1.24E+03
Barium (risk assessment)	1.58E+06	1.58E+06	2.68E+04	1.53E+04
Mercury (risk assessment)	4.14E+02	4.14E+02	1.37E+01	2.83E-01
Silver (risk assessment)	7.92E+03	7.92E+03	2.51E+03	7.65E+01
Thallium (risk assessment)	7.92E+02	7.92E+02	1.82E+02	7.65E+00
Nickel (risk assessment)	1.19E+05	1.19E+05	3.34E+03	1.74E+02
Selenium (risk assessment)	3.50E+03	3.50E+03	3.34E+02	3.38E+01
Zinc (risk assessment)	1.22E+06	1.22E+06	8.60E+04	1.18E+04
Total Chloride/ Chlorine (Tier 3) ^b	3.93E+06 (1.85E+06/2.08E+06) ^b	Not applicable	Not applicable	Not applicable
Ash (Not Applicable) ^b	1.19E+07 (4.44E+06/7.45E+06) ^b	Not applicable	Not applicable	Not applicable

^aMetals federates in g/hr and t/year are back-calculating based on actual rates averaged over three runs during Condition 4 of 1998 Trial Burn. Tier 1 adjusted federates in g/hr are based on emission rates which are determined to be acceptable based on results of the acute analysis conducted for Clean Harbors Deer Park, LP facility. Tier 1 adjusted federates in t/year are based on emission rates which are determined to be acceptable based on results of chronic multipathway risk assessment conducted for Clean Harbors Deer Park facility.

^bTrain I/Train II Chloring and Ash federates are based on Conditions 3I and 3II of 1998 Trial Burn.

^cg/hr denotes grams/hour and t/year denotes tons (2000 pounds)/year.

TABLE V.H.4 – MAXIMUM ALLOWABLE EMISSION RATES

The total emission rate from the Incinerator System (Train I plus Train II) shall not exceed the following limitations, as noted. The metals limitations have been evaluated through risk assessment. The particulate, hydrogen chloride, and free chlorine limits are based upon testing or regulatory limits.

Carcinogenic Constituent (Compliance Tier/Basis)	Maximum Allowable Emission Rate ¹	Units ²
Arsenic (risk assessment)	2.92E+01 2.82E-01	g/hr t/y
Beryllium (risk assessment)	6.48E+00 6.26E-02	g/hr t/y
Cadmium (risk assessment)	3.17E+01 3.06E-01	g/hr t/y
Chromium, Total (risk assessment)	3.17E+01 3.06E-01	g/hr t/y
Non-Carcinogenic Constituent (Compliance Tier/Basis)	Maximum Allowable Emission Rate ¹	Units ²
Antimony (risk assessment)	1.58E+03 1.53E+01	g/hr t/y
Barium (risk assessment)	1.58E+03 1.53E+01	g/hr t/y
Lead (risk assessment)	1.15E+03 1.11E+01	g/hr t/y
Mercury (risk assessment)	1.66E+02 7.30E-02	g/hr t/y
Nickel (risk assessment)	2.38E+02 3.48E-01	g/hr t/y
Selenium (risk assessment)	6.48E+02 6.26E+00	g/hr t/y
Silver (risk assessment)	1.58E+02 1.53E+00	g/hr t/y
Thallium (risk assessment)	3.17E+02 3.06E+00	g/hr t/y
Zinc (risk assessment)	1.58E+04 1.53E+02	g/hr t/y
Hydrogen Chloride (40 CFR 264.343(b))	1.80E+03	g/hr
Free Chlorine (Tier 3)	1.59E+02	g/hr
Particulate Matter (N.A.)	0.03	Grains/dscf

¹Tier 3 free chlorine emission rate is based on actual emission measured during the 1998 Trial Burn.

²g/hr denotes grams per hour and t/yr denotes tons (2000 pounds)/year. Grains/dscf denotes grains per dry standard cubic foot (standard conditions: 760 mm Hg, 68°F) after correction to a stack gas concentration of 7% oxygen.

Table V.H.5. – "Direct Burn" Chemicals

CAS#	Chemical Name
75365	acetyl chloride
107028	acrolein
140885	Acrylic acid, ethyl ester
107119	allylamine
111364	butyl isocyanate
109795	butyl mercapran,n-
75649	butylamine, tert-
123728	butyraldehyde
79049	chloracetylchloride
107302	chloromethylmethyl ether
4170303	crotonaldehyde
506683	cyanogen bromide
7572294	dichloroacetylene
542881	dichloromethyl ether; bis(chloromethyl)ether
352932	diethyl sulfide; ethyl sulfide
57147	dimethyl hydrazine, 1,1 -
75183	dimethyl sulfide
NOCAS67	dimethyl zinc
541413	ethyl chlorocarbonate
75081	ethyl mercaptan
151564	ethyleneimine
111308	glutraldehyde
592767	heptene
7782798	hydrazoic acid (N3H)
13463406	iron pentacarbonyl (as Fe)

Table V.H.5. – "Direct Burn" Chemicals

CAS#	Chemical Name
78795	isoprene
78853	methacrolein
623427	methyl butyrate
79221	methyl chloroformate
75547	methyl dichlorosilane
1388234	methyl ethyl ketone peroxide
60344	methyl hydrazine
624839	methyl isocyanate
556616	methyl isothiocyanate; methyl mustard oil
75796	methyl trichlorosilane
78794	methyl vinyl ketone
13463393	nickel carbonyl
76062	nitrotrichloromethane; trichloronitromethane
19624227	pentaborane
594423	perchloromethyl mercaptan
382218	perfluoroisobutylene
10025783	phosphorus oxychloride
7719122	phosphorus trichloride
107039	Propyl mercaptan, n-
75592	thtramethyl ammonium hydroxide
75741	tetramethyl lead
509148	tetranitromethane
76028	trichloroacetyl chloride
121437	trimethyl borate
121459	trimethyl phosphate
75503	trimethylamine
100403	vinyl cyclohexend, 4-; ethenylcyclohexend, 4-

TABLE V.K MISCELLANEOUS UNITS

Permit Unit No.	Miscellaneous Unit	N.O.R. Unit #	Storage, Processing, and/or Disposal	Waste No.s ¹	Rated Capacity	Dimensions	Unit will manage Ignitable, Reactive, or Incompatible Waste (state all that apply)
97	Pugmill B-1203	125	Process	101-107, 110, 111	22 yd ³	16'x8'x4.5'	No
99	Railcar Unloading Area	130	Storage, Process	101-105, 108	50,000 gal	120'x16'	Yes
100 ²	Rotary Reactor Feed Tower T- 638	133	Storage	101-107, 109-111	7,575 gal	11.52'x11.09'x8.02'	Yes
102	Container QC Area	073	Storage	101-107, 109-111	75,000 gal	irregular	Yes
103	Direct Burn Area	131	Storage, Process	101-105, 108, 109	40,000 gal	4 irregular areas	Yes
105	PCB Shredder	015	Process	101-108, 110	3,945 gal	irregular	No
108	North Pad	171	Process	101-105, 108, 109	10,000 gal	irregular	Yes

¹from Table IV.B, first column

² – Waste storage in Permit Unit No. 100 is permitted during operating shifts in which the Train II Incinerator Kiln is operating under normal conditions. Permit Unit No. 100 shall be maintained empty, as soon as practicable, at all other times.

Waste Management Unit/Area Name ¹ East Landfill					
Well Number(s)	MW-302.3	MW-307.3	MW-312.3	MW-316.3	MW-317.3
Hydrogeologic Unit Monitored	Stratum 3	Stratum 3	Stratum 3	Stratum 3	Stratum 3
Type (e.g., point of compliance, background, observation, etc.)	Upgradient Background	Upgradient Background	Upgradient Background	Upgradient Background	Upgradient Background
Up or Down Gradient	Up	Up	Up	Up	Up
Casing Diameter and Material	4" PVC	4" PVC	4" PVC	4" PVC	4" PVC
Screen Diameter and Material	4" PVC	4" PVC	4" PVC	4" PVC	4" PVC
Screen Slot Size (in.)	0.01 inch	0.01 inch	0.01 inch	0.01 inch	0.01 inch
Top of Casing Elevation (ft, MSL) – initial	26.58	25.05	23.80	24.42	25.65
Grade or Surface Elevation (ft, MSL)- initial	23.50	22.15	23.80	21.50	23.50
Well Depth (ft,) ² – initial	76.53	77.46	75.31	75.39	70.51
Screen Interval ² , From (ft) To (ft)	61.0 71.5	59.0 74.0	64.0 74.0	50.0 70.0	45.0 65.0
Facility Coordinates (e.g., lat/long or company coordinates)	97798.9941N 102449.9861E	97146.9858N 102494.9976E	96550.0032N 102498.9870E	96098.9887N 101899.0095E	96048.9N 102400.8E
Top of Casing Elevation (ft,MSL)	26.58	24.85	25.94	24.42	25.95

¹From Tables in Section V.

²Below grade or surface elevation (ft) - initial

Waste Management Unit/Area Name ¹ East Landfill						
Well Number(s)	MW-300.3	MW-306.3	MW-311.3	PMW* - 319.3	PMW* - 320.3	PMW* - 321.3
Hydrogeologic Unit Monitored	Stratum 3	Stratum 3	Stratum 3	Stratum 3	Stratum 3	Stratum 3
Type (e.g., point of compliance, background, observation, etc.)	Pt. Of Compliance	Pt. Of Compliance	Pt. Of Compliance	Pt. Of Compliance	Pt. Of Compliance	Pt. Of Compliance
Up or Down Gradient	Up	Up	Up	Up	Up	Up
Casing Diameter and Material	4" PVC	4" PVC	4" PVC	4" PVC	4" PVC	4" PVC
Screen Diameter and Material	4" PVC	4" PVC	4" PVC	4" PVC	4" PVC	4" PVC
Screen Slot Size (in.)	0.01 inch	0.01 inch	0.01 inch	0.01 inch	0.01 inch	0.01 inch
Top of Casing Elevation (ft, MSL) – initial	23.73	22.55	23.70	N/A	N/A	N/A
Grade or Surface Elevation (ft, MSL)- initial	21.50	20.30	21.10	N/A	N/A	N/A
Well Depth (ft,) ² – initial	74.0	70.0	70.47	N/A	N/A	N/A
Screen Interval ² , From (ft) To (ft)	53 73	39.5 59.5	45.0 65.0	N/A	N/A	N/A
Facility Coordinates (e.g., lat/long or company coordinates)	97749.9111N 101798.9189E	97198.9409N 101798.9189E	96699.0235N 101799.9834E	N/A	N/A	N/A
Top of Casing Elevation (ft,MSL)	26.47	25.11	23.71	N/A	N/A	N/A

¹From Tables in Section V.

²Below grade or surface elevation (ft) - initial *Proposed Monitoring Well

Waste Management Unit/Area Name ¹ East Landfill						
	PMW –					
Well Number(s)	322.3*	323.3*	324.3*	325.3*	326.3*	327.3*
Hydrogeologic Unit Monitored	Stratum 3					
Type (e.g., point of compliance, background, observation,	Pt. Of					
etc.)	Compliance	Compliance	Compliance	Compliance	Compliance	Compliance
Up or Down Gradient	Down	Down	Down	Down	Down	Down
Casing Diameter and Material	4" PVC					
Screen Diameter and Material	4" PVC					
Screen Slot Size (in.)	0.01 inch					
Top of Casing Elevation (ft, MSL) – initial	N/A	N/A	N/A	N/A	N/A	N/A
Grade or Surface Elevation (ft, MSL)- initial	N/A	N/A	N/A	N/A	N/A	N/A
Well Depth $(ft,)^2$ – initial	N/A	N/A	N/A	N/A	N/A	N/A
Screen Interval ² , From (ft) To (ft)	N/A	N/A	N/A	N/A	N/A	N/A
Facility Coordinates (e.g., lat/long or company coordinates)	N/A	N/A	N/A	N/A	N/A	N/A

¹From Tables in Section V.

²Below grade or surface elevation (ft) - initial *Proposed Monitoring Well

Waste Management Unit/Area Name ¹ East Landfill					
Well Number(s)	PMW – 328.3*	PMW – 329.3*			
Hydrogeologic Unit Monitored Type (e.g., point of compliance, background, observation,	Stratum 3 Pt. Of Compliance	Stratum 3 Pt. Of Compliance			
Up or Down Gradient	Down	Down			
Casing Diameter and Material	4" PVC	4" PVC			
Screen Diameter and Material Screen Slot Size (in.)	4" PVC 0.01 inch	4" PVC 0.01 inch			
Top of Casing Elevation (ft, MSL) – initial	N/A	N/A		_	
Grade or Surface Elevation (ft, MSL)- initial Well Depth (ft,) ² – initial	N/A N/A	N/A N/A			
Screen Interval ² , From (ft) To (ft)	N/A	N/A			
Facility Coordinates (e.g., lat/long or company coordinates)	N/A	N/A			

¹From Tables in Section V.

²Below grade or surface elevation (ft) - initial *Proposed Monitoring Well

Waste Management Unit/Area Name ¹ East Landfill							
Well Number(s)	MW-305.1	MW-310.1	MW-314.1	MW-304.1	MW-309.1	MW-315.1	MW-318.1
Hydrogeologic Unit Monitored	Stratum 1						
Type (e.g., point of compliance,	Supplemental:	Supplemental:	Supplemental:	G 1 1	G 1 1	G 1	G 1
background, observation, etc.)	Background	Background	Background	Supplemental	Supplemental	Supplemental	Supplemental
Up or Down Gradient	N/A	N/A	N/A	upgradient	upgradient	upgradient	upgradient
Casing Diameter and Material	2" PVC						
Screen Diameter and Material	2" PVC						
Screen Slot Size (in.)	0.01 inch						
Top of Casing Elevation (ft, MSL)	23.33	22.59	25.28	25.78	24.38	25.43	25.65
Grade or Surface Elevation (ft, MSL)	21.20	21.40	22.20	22.90	21.58	23.60	23.00
Well Depth (ft,) ²	18.0	19.0	42.5	29.5	22.0	21.5	21.5
Screen Interval ² , From (ft) To (ft)	10.5 15.5	11.5 16.5	25.0 40.0	14.0 27.0	9.5 19.5	14.0 19.0	10.0 20.0
Facility Coordinates (e.g., lat/long or company coordinates)	N97349 E102150	N96849 E102150	N96350 E102150	N97450 E102451	N96897 E102500	N96350 E102499	N95899 E102150
Top of Casing Elevation (ft, MSL) – current	25.72	24.98	25.28	25.78	24.38	27.82	25.65

¹From Tables in Section V.

²Below grade or surface elevation (ft) - initial

Waste Management Unit/Area Name ¹ East Landfill					
Well Number(s)	MW-301.1	MW-303.1	MW-308.1	MW-313.1	
Hydrogeologic Unit Monitored	Stratum 1	Stratum 1	Stratum 1	Stratum 1	
Type (e.g., point of compliance, background, observation, etc.)	Supplemental	Supplemental	Supplemental	Supplemental	
Up or Down Gradient	downgradient	downgradient	downgradient	downgradient	
Casing Diameter and Material	2" PVC	2" PVC	2" PVC	2" PVC	
Screen Diameter and Material	2" PVC	2" PVC	2" PVC	2" PVC	
Screen Slot Size (in.)	0.01 inch	0.01 inch	0.01 inch	0.01 inch	
Top of Casing Elevation (ft, MSL)	23.65	22.09	22.45	24.48	
Grade or Surface Elevation (ft, MSL)	21.5	21.10	21.40	21.50	
Well Depth (ft,) ²	18.0	17.5	16.5	23.5	
Screen Interval ² , From (ft) To (ft)	10.5 15.5	10.5 15.5	9.0 14.0	11.0 21.0	
Facility Coordinates (e.g., lat/long or company coordinates)	N97800 E102101	N97450 E101799	N96949 E101800	N96400 E101800	
Top of Casing Elevation (ft, MSL) – current	26.06	25.51	22.31	24.48	

¹From Tables in Section V.

²Below grade or surface elevation (ft) - initial

TABLE VI.B.3.c GROUNDWATER SAMPLE ANALYSIS

East Landfill Background and Point of Compliance Wells

For each well or group of wells, specify the suite of parameters for which groundwater samples will be analyzed.

Well No(s).:¹
MW-302.3, MW-307.3, MW-312.3, MW-316.3, MW-317.3, MW-300.3, MW-306.3, MW-311.3, MW-319.3, PMW-320.3, PMW-321.3, PMW-323.3, PMW-324.3, PMW-325.3, PMW-326.3, PMW-327.3, PMW-328.3, PMW-329.3

Parameter	Sampling Frequency	Analytical Method ²	Detection Limits	Concentration Limits ³
Chlorobenzene	Semi-annually	SW846 8260B	0.005	N/A*
Tetrachloroethene	Semi-annually	SW846 8260B	0.005	N/A*
Trichloroethene	Semi-annually	SW846 8260B	0.005	N/A*
Carbon Tetrachloride	Semi-annually	SW846 8260B	0.005	N/A*
Benzene	Semi-annually	SW846 8260B	0.005	N/A*
1,1,1-Trichloroethane	Semi-annually	SW846 8260B	0.005	N/A*
1,1 Dichloroethane	Semi-annually	SW846 8260B	0.005	N/A*
Chloroform	Semi-annually	SW846 8260B	0.005	N/A*
Total Organic Carbon (TOC)	Semi-annually	SW846 9060	1.0	N/A*
Total Organic Halogen (TOX)	Semi-annually	SW846 9020B	0.100	N/A*

¹PMW=proposed monitoring well

²Clean Harbors Deer Park, LP reserves the right to use alternate approved methods and/or updated methods as they are promulgated.

³The concentration limits shall be the basis for determining whether a release has occurred from the waste management unit/area. The concentration limits shall be based on background values for the waste management unit/area, or Practical Quantitation Limit (PLQ) values identified in 40 CFR 264, Appendix IX. If background values are lower that PQLs, the applicant may choose respective PQLs as concentration limits for the hazardous constituent.

^{*}East Landfill is not currently operational or under Detection Monitoring requirements.

TABLE VI.B.3.c GROUNDWATER SAMPLE ANALYSIS (CON'D)

East Landfill Background and Point of Compliance Wells

For each well or group of wells, specify the suite of parameters for which groundwater samples will be analyzed.

Well No(s).:¹ MW-302.3, MW-307.3, MW-312.3, MW-316.3, MW-317.3, MW-300.3, MW-306.3, MW-311.3, MW-319.3, PMW-320.3, PMW-321.3, PMW-322.3, PMW-323.3, PMW-324.3, PMW-325.3, PMW-326.3, PMW-327.3, PMW-328.3, PMW-329.3

Parameter	Sampling Frequency	Analytical Method ²	Detection Limits	Concentration Limits ³
Specific Conductance	Semi-annually	SW846 9050	1 umho	N/A*
рН	Semi-annually	SW846 9040	0.01 (s.u.)	N/A*
Sodium	Semi-annually	SW846 6010B/6020	1.0	N/A*
Chloride	Semi-annually	SW846 9056/9251 325.3	3.0	N/A*
Sulfate	Semi-annually	SW846 9056/9038	5.0	N/A*
Nitrate	Semi-annually	SW846 9056 353.2	0.10	N/A*
Arsenic	Semi-annually	SW846 6010B/6020	0.010	N/A*
Cadmium	Semi-annually	SW846 6010B/6020	0.005	N/A*
Chromium	Semi-annually	SW846 6010B	0.020	N/A*
Selenium	Semi-annually	SW846 6020/7741A gaseous hydride/7740 GF	0.002	N/A*

¹PMW=proposed monitoring well

²Clean Harbors Deer Park, LP reserves the right to use alternate approved methods and/or updated methods as they are promulgated.

³The concentration limits shall be the basis for determining whether a release has occurred from the waste management unit/area. The concentration limits shall be based on background values for the waste management unit/area, or Practical Quantitation Limit (PLQ) values identified in 40 CFR 264, Appendix IX. If background values are lower that PQLs, the applicant may choose respective PQLs as concentration limits for the hazardous constituent.

^{*}East Landfill is not currently operational or under Detection Monitoring requirements.

TABLE VI.B.3.c GROUNDWATER SAMPLE ANALYSIS

East Landfill Background and Point of Compliance Wells

For each well or group of wells, specify the suite of parameters for which groundwater samples will be analyzed.

Well No(s).:¹ MW-304.1, MW-309.1, MW-315.1, MW-318.1, MW-301.1, MW-303.1, MW-308.1, MW-313.1

Parameter	Sampling Frequency	Analytical Method ²	Detection Limits	Concentration Limits ³
	Quarterly first year,			
Chloroabenzene	Semi-annually thereafter	EPA SW-846 8260B	0.005	N/A*
	Quarterly first year,			
Tetrachloroethene	Semi-annually thereafter	EPA SW-846 8260B	0.005	N/A*
	Quarterly first year,			
Trichloroethene	Semi-annually thereafter	EPA SW-846 8260B	0.005	N/A*
	Quarterly first year,			
Carbon Tetrachloride	Semi-annually thereafter	EPA SW-846 8260B	0.005	N/A*
	Quarterly first year,			
Benzene	Semi-annually thereafter	EPA SW-846 8260B	0.005	N/A*
	Quarterly first year,			
1,1,1-Trichloroethane	Semi-annually thereafter	EPA SW-846 8260B	0.005	N/A*
	Quarterly first year,			
Chloroform	Semi-annually thereafter	EPA SW-846 8260B	0.005	N/A*
	Quarterly first year,			
1,1 Dichloroethane	Semi-annually thereafter	EPA SW-846 8260B	0.005	N/A*

¹PMW=proposed monitoring well

²Clean Harbors Deer Park, LP reserves the right to use alternate approved methods and/or updated methods as they are promulgated.

³The concentration limits shall be the basis for determining whether a release has occurred from the waste management unit/area. The concentration limits shall be based on background values for the waste management unit/area, or Practical Quantitation Limit (PLQ) values identified in 40 CFR 264, Appendix IX. If background values are lower that PQLs, the applicant may choose respective PQLs as concentration limits for the hazardous constituent.

^{*}East Landfill is not currently operational or under Detection Monitoring requirements.

TABLE VII.E.1 PERMITTED UNIT CLOSURE COST SUMMARY

Existing Unit Closure Cost Estimate					
TCEQ Permit Unit No.	Unit	Cost ¹			
02	North Landfill	1,750,441			
03	Incinerator Train I	35,247			
04	Incinerator Train II	39,712			
09	Storage Tank T-1	29,049			
10	Storage Tank T-2	17,219			
11	Storage Tank T-11	21,919			
12	Storage Tank T-12	21,919			
13	Storage Tank T-18	17,219			
14	Storage Tank T-19	14,441			
15	Storage Tank T-20	6,677			
16	Storage Tank T-21	6,677			
17	Storage Tank T-27	13,778			
18	Storage Tank T-28	13,778			
19	Storage Tank T-31	38,960			
20	Storage Tank T-32	39,026			
21	Storage Tank T-60	75,253			
22	Storage Tank T-61	88,237			
23	Storage Tank V-101	9,492			
24	Storage Tank V-103	7,401			
25	Storage Tank V-104	15,612			
26	Storage Tank V-105	15,612			
27	Storage Tank V-106	15,612			
28	Storage Tank V-107	15,612			
29	Storage Tank V-108	15,612			
30	Storage Tank V-109	15,139			
31	Storage Tank V-110	15,139			

TABLE VII.E.1 PERMITTED UNIT CLOSURE COST SUMMARY

	Existing Unit Closure Cost Estin	nate
TCEQ Permit Unit No.	Unit	Cost ¹
37	Storage Tank T-29	9,921
38	Storage Tank T-30	9,921
NA	West Tank Farm Containment	14,828
39	Storage Tank T-70	32,604
40	Storage Tank T-71	31,891
41	Storage Tank T-72	31,891
44	Storage Tank T-75	31,891
45	Storage Tank T-76	31,402
46	Storage Tank T-77	31,402
NA	North Tank Farm Containment	246,678
76a	Container Storage Area DSP-1	110,841
76b	Container Storage Area DSP-2	135,778
76c	Container Storage Area DSP-3	411,920
76d	Container Storage Area DSP-4	494,112
76e	Container Storage Area DSP-5	548,991
76f	Container Storage Area DSP-6	614,651
76g	Container Storage Area DSP-7	72,930
76h	Container Storage Area PCB Warehouse	837,934
77	Trans & Drum Handling Bldg	646,777
78	RCRA Warehouse	2,119,790
79	Tank Truck Storage Pak	117,540
87	Mixing Hoppers T-1001-1	32,235
88	Mixing Hoppers T-1001-2	31,580
89	Mixing Hoppers T-1001-3	31,580
90	Bin Storage Area BSA-1	628,180
91	Bin Storage Area BSA-2	1,750,357
92	Bin Storage Area BSA-3	759,699
93	Storage Tank V-1204	4,100
94	Stabilization Tank T-1202	5,455

TABLE VII.E.1 PERMITTED UNIT CLOSURE COST SUMMARY

	Existing Unit Closure Cost Estimate			
TCEQ Permit Unit No.	Unit	Cost ¹		
95	Stabilization Tank T-1203	5,455		
96	Stabilization Tank T-1204	7,770		
97	Stabilization Tank B-1203	3,327		
97	Stabilization Tank B-1203	167,994		
99	Rail Car Unloading Area	87,178		
100	Rotary Reactor Feed Tower	19,132		
101	DSP-8	89,049		
102	Container QC Area	273,069		
103	Direct Burn Areas	186,459		
104	Front-Line Storage Pad	153,013		
105	PCB Shredder	43,144		
106	Waste Receiving Pad	398,160		
107	T-201	17,653		
108	North Pad	21,512		
03 and 04	MACT air pollution control equipment TOTAL EXISTING UNIT CLOSURE COST	16,852		
	\$13,671,429			

	Existing Unit Closure Cost Estimate	
TCEQ Permit Unit No.	Unit	Cost ¹
98	East Landfill (4 Cells)	2,939,147
109	T-33	38,463
	Total Proposed Unit Closure Cost Estimate	\$2,977,610

¹ Costs are based on calendar year 2004 dollars

TABLE VII.E.2 PERMITTED UNIT CLOSURE COST SUMMARY

	Existing Unit Closure Cost Estimate			
TCEQ Permit Unit No.	Unit	Cost ¹		
01	South Landfill	\$2,092,036		
02	North Landfill	\$3,673,104		
-	Leachate Collection Tank*	\$22,656		
_	TOTAL EXISTING UNIT CLOSURE COST	ΦΕ 7 0 7 7 0.6		
	ESTIMATE	\$5,787,796		

^{*}One time cost provided at beginning of post-closure period.

	Existing Unit Closure Cost Estimate	
TCEQ Permit Unit No.	Unit	Cost ¹
98	East Landfill	\$1,391,683
	Total Proposed Unit Closure Cost Estimate	\$1,391,683

¹Costs are based on 2004 dollars.

TABLE VII.G. – POST-CLOSURE PERIOD

Unit Name	Date Certified	Permitted Post	Date Post Closure
	Closed	Closure	Ends
		Period (Yrs)	
South Landfill			
(Permit Unit No. 1)	04/26/1996	30	04/26/2026
North Landfill			30 years after
(Permit Unit No. 2)	Active	30	certified closed
East Landfill			30 years after
(Permit Unit No. 98)	Not Constructed	30	certified closed

LIST OF INCORPORATED APPLICATION MATERIALS

The following is a list of Part A and Part B Industrial and Hazardous Waste Application elements which are incorporated into all Industrial and Hazardous Waste permits by reference as per Provision I.I.5.

TCEQ PART A Application Form

- I. General Information
 - I.B. Authorized Agents
 - I.C. Identify entity who will conduct facility operation.
 - I.D. Facility Ownership

III. Wastes and Waste Management

III.C.1. - Location of Waste Management Units - Topographic Map extending one mile beyond facility.

TCEQ PART B Application Form

- I. General Information
 - I.A. Applicant
 - I.C. Facility Location Address
 - I.D. Application Type
 - I.E. Facility Siting Summary
 - I.F. Wastewater and Stormwater Disposition
 - I.G. Adjacent Landowners List

II. Facility Siting Criteria

- II.A. Requirements for Storage or Processing Facilities and Landfills
- II.F.1 Flooding
- II.G. Additional Information Requirements

III. Facility Management

- III.B. Personnel Training Plan
- III.C. Security
- III.D. Inspection Schedule
- III.E. Contingency Plan
- III.E.1. Arrangements with Local Authorities
- III.E.2. Emergency Coordinators List
- III.E.3. Emergency Equipment List

IV. Wastes and Waste Analysis

- IV.B. Table IV.B. Waste managed in permitted units
- IV.C. Table IV.C. Sampling and Analytical Methods
- IV.D. Waste Analysis Plan

V. Engineering Reports

- V.A.1. General Information
- V.A.3. Construction schedules
- V.A.4. Detailed Plans & Specifications to show facility will be constructed and operated in compliance with all pertinent permitting requirements.
- V.B Container Storage Areas Engineering Reports Includes Table V.B. Container Storage Areas Summary
- V.C. Tanks and Tank Systems Engineering Reports Includes Table V.C. Tanks and Tank Systems Summary
- V.G. Landfill Engineering Report
 - V.G.1. Table V.G.1. Landfills
 - V.G.5. Describe the Landfill
 - V.G.6. Liner System Includes Table V.G.3. Landfill Liner System
 - $V.G.7-Leachate\ Collection\ System-Includes\ Table\ V.G.4.\ Landfill\ Leachate\ Collection\ System$
 - V.G.8 Landfill MTR Plans and Specifications showing Conformity with 31 TAC§335.173
 - V.G.9. Site Development Plan Methods used to deposit waste in landfill
 - V.G.10. Landfill Run-on Control
 - V.G.11 Landfill Run-off Control
 - V.G.12 Wind Dispersal
 - V.G.13. Liquid Waste Stabilization
- V.H. Incinerator Engineering Report
 - V.H.1. Table V.H.1. Incinerators
 - V.H.2. Table V.H.2. Incinerator Permit Conditions, Monitoring, and Automatic Waste Feed Cutoff Systems
 - V.H.3. Maximum Allowable Constituents Feed Rate
 - V.H.4. Maximum Allowable Emission Rates
- V.K. Miscellaneous Units Design Report Includes Table V.K.1. Miscellaneous Units
- VI. Geology Report
 - VI.A. Geology and Topography
 - VI.B. Facility Ground Water
 - VI.B.3. Description of Current & Proposed Detection Monitoring System

VI.B.3.a. – Proposed list of waste specific indicator parameters

Describe proposed ground water-monitoring system

Statistical Comparison Procedures to evaluate ground-water monitoring data

Specify statistical method and process for determining whether constituent concentrations exceed background

VI.B.3.b. – Unit Ground-Water Monitoring System

VI.B.3.c. – Ground-Water Sample Analysis

VI.B.3.d. – Drawings Depicting current and proposed monitoring well design

VI.B.3.e – Maps Showing

- 1) Monitor well location
- 2) Soil-pore sampling points
- 3) Waste Management Area
- 4) Property Boundary
- 5) Point of Compliance
- 6) Direction of Ground-Water Flow
- 7) Extent of any known plume of contamination

VII. Closure and Post-Closure Care Plans

VII.A. – Closure

Table VII.A Unit Closure

VII.B. - Closure Cost Estimate

VII.C. – Post-closure

VII.D. - Post-closure Cost Estimate

VII.E. – Closure and Post-closure Cost Summary

Table VI.E.1 Permitted Unit Closure Cost Summary

Table VI.E.2. Permitted Unit Post-closure Cost Summary

VIII. Financial Assurance

VIII.A.1. – Financial Assurance for Closure

VIII.A.2. – Financial Assurance for Post-Closure

VIII.A.3. – Liability Requirements

VIII.B.1. – Applicant Financial Disclosure Statements

VIII.B.2. – Audited financial statements

VIII.B.4. – Form 10-K

VIII.C. – Applicants Requesting Facility Expansion, Capacity Expansion, or New

Construction

IX. Release from Solid Waste Units & Corrective Action

X. Air Emission Standards

X.A. – Process Vents

X.B. – Equipment Leaks

X.C. – Tanks, Surface Impoundments, and Containers

LIST OF PERMITTED FACILITY UNITS

TCEQ Permit Unit No.	Unit Name	NOR No.	Unit Description	Capacity
01	South Landfill (Closed)	001	Secure landfill, above- and below-grade	1,500,000 yd ³
02	North Landfill (Cells 1 – 6)	134	Secure landfill, above- and below-grade	815,000 yd ³
03	Train I Incinerator	005	Incineration System, consisting of a 3.6 meter inner diameter (ID) slagging rotary kiln and mechanical fluidized bed reactor, and a liquid injection furnace with a common afterburner and a pollution abatement system.	216 MM BTU
04	Train II Incinerator	031	Incineration System, consisting of a 4.4 meter ID slagging rotary kiln and a mechanical fluidized bed reactor, with a common afterburner and pollution abatement system.	213.5 MM BTU
09	T-1	084	Tank, closed top, carbon steel	20,000 g
10	T-2	085	Tank, closed top, carbon steel	24,000 g
11	T-11	086	Tank, closed top, carbon steel	15,000 g
12	T-12	087	Tank, closed top, carbon steel	15,000 g
13	T-18	088	Tank, closed top, carbon steel	24,000 g
14	T-19	089	Tank, closed top, carbon steel	20,000 g
15	T-20	090	Tank, closed top, carbon steel	7,000 g
16	T-21	091	Tank, closed top, carbon steel	7,000 g
17	T-27	092	Tank, closed top, carbon steel	14,600 g
18	T-28	093	Tank, closed top, carbon steel	14,600 g
19	T-31	094	Tank, closed top, carbon steel	27,000 g
20	T-32	095	Tank, closed top, carbon steel	27,000 g
21	T-60	096	Tank, closed top, carbon steel	100,000 g
22	T-61	097	Tank, closed top, carbon steel	200,000 g
23	V-101	021	Tank, closed top, carbon steel	10,000 g

TCEQ Permit Unit No.	Unit Name	NOR No.	Unit Description	Capacity
24	V-103	022	Tank, closed top, carbon steel	10,500 g
25	V-104	023	Tank, closed top, carbon steel	22,400 g
26	V-105	098	Tank, closed top, carbon steel	22,400 g
27	V-106	099	Tank, closed top, carbon steel	22,400 g
28	V-107	100	Tank, closed top, carbon steel	22,400 g
29	V-108	101	Tank, closed top, carbon steel	22,400 g
30	V-109	102	Tank, closed top, carbon steel	21,000 g
31	V-110	103	Tank, closed top, carbon steel	21,000 g
37	T-29	109	Tank, closed top, carbon steel	6,400 g
38	T-30	110	Tank, closed top, carbon steel	6,400 g
39	T-70	111	Tank, closed top, carbon steel	22,500 g
40	T-71	112	Tank, closed top, carbon steel	22,000 g
41	T-72	113	Tank, closed top, carbon steel	22,000 g
44	T-75	116	Tank, closed top, carbon steel	22,000 g
45	T-76	117	Tank, closed top, carbon steel	22,000 g
46	T-77	118	Tank, closed top, carbon steel	22,000 g
76a	DSP-1	036	Container Storage Area, covered	30,250 g
76b	DSP-2	037	Container Storage Area, covered	37,060 g
76c	DSP-3	038	Container Storage Area, covered	113,870 g
76d	DSP-4	039	Container Storage Area, covered	136,680 g
76e	DSP-5	040	Container Storage Area, enclosed	151,800 g
76f	DSP-6	041	Container Storage Area, covered	214,200 g
76g	DSP-7	042	Container Storage Area, covered	19,800 g
76h	Warehouse	043	Container Storage Area, enclosed	212,520 g

TCEQ				
Permit	Unit Name	NOR	Unit Description	Capacity
Unit No.		No.	1	1 3
	Transformer &			
77	Drum Handling Bldg.	034		162 090 a
11	Container	034	Container Storage Area, enclosed	163,980 g
	Storage			
78	Warehouse	007	Container Storage Area, enclosed	587,520 g
5 0	Tank Truck	1.60		50. 5 00
79	Storage Pad	168	Container Storage Area, open, 11 5,500 trailer	60,500 g
87	T-1001-1	081	Tank, open top, carbon steel	75 yd^3
88	T-1001-2	082	Tank, open top, carbon steel	75 yd ³
89	T-1001-3	083	Tank, open top, carbon steel	75 yd ³
90	BSA-1	069	Container Storage Area	1,500 yd ³
91	BSA-2	070	Container Storage Area	4,650 yd ³
92	BSA-3	071	Container Storage Area	1,650 yd ³
93	V-1204	121	Tank, closed top, carbon steel	13,500 g
94	T-1202	122	Tank, open top	25,312 g
95	T-1203	123	Tank, open top	25,312 g
96	T-1204	124	Tank, open top	70,875 g
97	Pugmill B-1203	125	Miscellaneous Unit, continuous mixer	22 yd ³
00	East Landfill	125		659,000 13
98	(Cells 1-4) Railcar	135	Secure Landfill, above- and below-grade	658,000 yd ³
99	Unloading Area	130	Miscellaneous Unit, two 25,000 gallon railcars	50,000 g
	Rotary Reactor		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 8
	Feed Tower, T-			
100	638	133	Tank	7,575 g
101	DSP-8	074	Container Storage Area	23,700
102	Container QC	073	Missellansons Haife	75 000 ~
102	Area	0/3	Miscellaneous Unit	75,000 g

TCEQ Permit Unit No.	Unit Name	NOR No.	Unit Description	Capacity
103	Direct Burn Area	131	Miscellaneous Unit	44,000 g
104	Front-Line Storage Pad	035	Container Storage Area	60,500 g
105	PCB Shredder	015	Miscellaneous Unit	3,945 g
106	Waste Receiving Pad	167	Container Storage Area	212,100 g
107	3.6 Bulk Feed Tank T-201	176	Tank, open top, carbon steel	7,198 g
108	North Pad	171	Miscellaneous Unit	10,000 g
109	T-33	177	Tank, closed top, carbon steel	21,000 g

Well Design and Construction Specifications

- 1. The permittee shall use well drilling methods that minimize potential adverse effects on the quality of water samples withdrawn from the well, and that minimize or eliminate the introduction of foreign fluids into the borehole.
- 2. All wells constructed to meet the terms of this Permit shall be constructed such that the wells can be routinely sampled with a pump, bailer, or alternate sampling device. Piping associated with recovery wells should be fitted with sample ports or an acceptable alternative sampling method to facilitate sampling of the recovered ground water on a well by well basis.
- 3. Above the saturated zone the well casing may be two (2)-inch diameter or larger schedule 40 or 80 polyvinyl chloride (PVC) rigid pipe or stainless steel or polytetraflouroethylene (PTFE or "teflon") or an approved alternate material. The PVC casing must bear the National Sanitation Foundation logo for potable water applications (NSF-pw). Solvent cementing compounds shall not be used to bond joints and all connections shall be flush-threaded. In and below the saturated zone, the well casing shall be stainless steel or PTFE.

The Permittee may use PVC or fiberglass reinforced resin as an alternate well casing material below the saturated zone provided that it yields samples for ground-water quality analysis that are unaffected by the well casing material.

- 4. The permittee shall replace any well that has deteriorated due to incompatibility of the casing material with the ground-water contaminants or due to any other factors. Replacement of the damaged well shall be completed within ninety (90) days of the date of the inspection that identified the deterioration.
- 5. Well casings and screens shall be steam cleaned prior to installation to remove all oils, greases, and waxes. Well casings and screens made of fluorocarbon resins shall be cleaned by detergent washing.
- 6. For wells constructed after the date of issuance of this Permit, the screen length shall not exceed ten (10) feet within a given transmissive zone unless otherwise approved by the Executive Director. Screen lengths exceeding ten (10) feet may be installed in groundwater recovery or injection wells to optimize the ground-water remediation process in accordance with standard engineering practice.

7. The Permittee shall design and construct the intake portion of a well so as to allow sufficient water flow into the well for sampling purposes and to minimize the passage of formation materials into the well during pumping. The intake portion of a well shall consist of commercially manufactured stainless steel or PTFE screen or approved alternate material. The annular space between the screen and the borehole shall be filled with clean siliceous granular material (i.e., filter pack) that has a proper size gradation to provide mechanical retention of the formation sand and silt. The well screen slot size shall be compatible with the filter pack size as determined by sieve analysis data. The filter pack should extend no more than three (3) feet above the well screen. A silt trap, no greater than one (1) foot in length, may be added to the bottom of the well screen to collect any silt that enter the well. The bottom of the well casing shall be capped with PTFE or stainless steel or approved alternate material.

Ground-water recovery and injection wells shall be designed in accordance with standard engineering practice to ensure adequate well production and to accommodate ancillary equipment. Silt traps exceeding one (1) foot may be utilized to accommodate ancillary equipment. Well heads shall be fitted with mechanical wellseals, or equivalent, to prevent entry of surface water debris.

8. A minimum of two (2) feet of pellet or granular bentonite shall immediately overlie the filter pack in the annular space between the well casing and borehole. Where the saturated zone extends above the filter pack, pellet or granular bentonite shall be used to seal the annulus. The bentonite shall be allowed to settle and hydrate for a sufficient amount of time prior to placement of grout in the annular space. Above the minimum two (2)-foot thick bentonite seal, the annular space shall be sealed with a cement/bentonite grout mixture. The grout shall be placed in the annular space by means of a tremie pipe or pressure grouting methods equivalent to tremie grouting standards.

The cement/bentonite grout mixture of TCEQ approved alternative grout mixture shall fill the annular space to within two (2) feet of the surface. A suitable amount of time shall be allowed for settling to occur. The annular space shall be sealed with concrete, blending into a cement apron at the surface that extends at least two (2) feet from the outer edge of the monitor well borehole for above-ground completions. Alternative annular-space seal material may be proposed with justification and must be approved by the Executive Director prior to installation.

In cases where flush-to-ground completions are unavoidable, a protective structure such as a utility vault or meter box should be installed around the well casing and the concrete pad design should prevent infiltration of water into the vault. In addition, the Permittee must ensure that 1) the well/cap juncture is watertight; 2) the bond between the cement surface seal and the protective structure is watertight; and 3) the protective structure with a steel lid or manhole cover has a rubber seal or gasket.

- 9. Water added as a drilling fluid to a well shall contain no bacteriological or chemical constituents that could interfere with the formation or with the chemical constituents being monitored. For ground-water recovery and injection wells, drilling fluids containing freshwater and treatment agents may be utilized in accordance with standard engineering practice to facilitate proper well installation. In these cases, the water and agents added should be chemically analyzed to evaluate their potential impact on in-situ water quality and to assess the potential for formation damage. All such additives shall be removed to the extent practicable during well development.
- 10. Upon completion of installation of a well, the well must be developed to remove any fluids used during well drilling and to remove fines from the formation to provide a particulate-free discharge to the extent achievable by accepted completion methods and by commercially available well screens. Development shall be accomplished by reversing flow direction, surging the well or by air lift procedures. No fluids other than formation water shall be added during development of a well unless the aquifer to be screened is a low-yielding water-bearing aquifer. In these cases, the water to be added should be chemically analyzed to evaluate its potential impact on in-situ water quality, and to assess the potential for formation damage.

For recovery and injection wells, well development methods may be utilized in accordance with standard engineering practice to remove fines and maximize well efficiency and specific capacity. Addition of freshwater and treatment agents may be utilized during well development or re-development to remove drilling fluids, inorganic scale or bacterial slime. In these cases, the water and agents added should be chemically analyzed to evaluate their potential impact on in-situ water quality and to assess the potential for formation damage. All such additives shall be removed to the extent practicable during well development.

- 11. Each well shall be secured and/or designed to maintain the integrity of the well borehole and ground water.
- 12. The Permittee shall protect the above-ground portion of the well by bumper guards and/or metal outer casing protection.
- 13. Copies of drilling and construction details demonstrating compliance with the items of this provision shall be kept on site. This record shall include the following information:
 - name/number of well (well designation);
 - intended use of the well (sampling, recovery, etc.);
 - date/time of construction;
 - drilling method and drilling fluid used;
 - well location (± 0.5 ft);

- bore hole diameter and well casing diameter;
- well depth (± 0.1 ft.);
- drilling and lithologic logs;
- depth to first saturated zone;
- casing materials;
- screen materials and design;
- casing and screen joint type;
- screen slot size/length;
- filter pack material/size;
- filter pack volume (how many bags, buckets, etc.)
- filter pack placement method;
- sealant materials;
- sealant volume (how many bags, buckets, etc.);
- sealant placement method;
- surface seal design/construction;
- well development procedure;
- type of protective well cap;
- ground surface elevation (± 0.01 ft. MSL);
- top of casing elevation (± 0.01 ft. MSL); and
- detailed drawing of well (include dimensions).
- 14. The Permittee shall complete construction or abandonment and plugging of each well in accordance with the requirements of this Permit and 16 TAC § 76.1000 through § 76.1009 and shall certify such proper construction or abandonment within sixty (60) days of installation or abandonment. If the Permittee installs any additional or replacement wells, well completion logs for each well shall be submitted within sixty (60) days of well completion and development in accordance with 16 TAC § 76.700. Certification of each well shall be submitted within sixty (60) days of installation for an individual well project or within (60) days from the date of completion of a multiple well installation project. The certification shall be prepared by a qualified geologist or geotechnical Each well certification shall be accompanied by a certification report, including an accurate log of the soil boring, which thoroughly describes and depicts the location, elevations, material specifications, construction details, and soil conditions encountered in the boring for the well. A copy of the certification and certification report shall be kept on-site, and a second copy shall be submitted to the Executive Director. Required certification shall be in the following form:

"This is to certify that installation (or abandonment and plugging) of the following facility components authorized or required by TCEQ Permit No. 50089 has been completed, and that construction (or plugging) of said components has been preformed in accordance with and in compliance with the design and construction specification of Permit. No. 50089 (Description of facility components with reference to applicable permit provisions).

- 15. The Permittee shall clearly mark and maintain the well number on each well at the site.
- 16. The Permittee shall measure and keep a record of the elevation of the top of each well casing in feet above mean sea level to the nearest 0.01 foot and permanently mark the measuring point on the well. The permittee shall compare old and new elevations from previously surveyed wells and determine a frequency of surveying not to exceed five (5) year intervals.
- 17. Wells may be replaced at any time the Permittee or Executive Director determines that the well integrity or materials of construction or well placement no longer enable the well to yield samples representative of ground-water quality.
- 18. The Permittee shall plug soil test borings and wells removed from service with a cement/bentonite grout mixture so as to prevent the preferential migration of fluids in the area of the borehole. Certification of each well plugging shall be reported in accordance with Provision 14 of this attachment to this permit. The plugging of wells shall be in accordance with 16 TAC §76.1000 through §76.1009 dealing with Well Drilling, Completion, Capping and Plugging.
 - 19. A well's screened interval shall be appropriately designed and installed to meet the well's specific objective (i.e., either DNAPL, LNAPL, both, or other objective of the well). All wells designed to detect, monitor, or recover DNAPL must be drilled to intercept the bottom confining layer of the aquifer. The screened interval to detect DNAPL should extend from the top of the lower confining layer to above the portion of the aquifer saturated with DNAPL. The screened interval for all wells designed to detect, monitor, or recover LNAPL must extend high enough into the vadose zone to provide for fluctuations in the seasonal water table. In addition, the sandpacks for the recovery or monitoring well's screened interval shall be coarser than surrounding media to ensure the movement of NAPL to the well.

Attachment F - Compounds Detrimental to HPDE Liners

Acetaldehyde Acetone Acetylene tetrabromide Amyl acetate Amyl alcohol Amyl chloride Aniline Anisole Aqua Regia Benzaldehyde Benzene Benzone Benzyl chloride Bromobenzene Calcium sulfide **Butyl Acetate** Carbon tetrachloride Carbon disulfide Chlorosulfonic Acid Chromic acid Cresylic acid Dibenzyl ether Dichlorobenzene Dichloroethane

Dichloropropane Dichloropropene

2,2 - Dichloroproprionic Acid Diesel Oil

Diethyl ether Diethylene glycol monobutyl ether

Ether ethyl benzene Ethyl acetate
Ethyl benzene Ethyl benzoate
Ethyl chloride, liquid Ethyl Ether

Ethylene chloride Ethylene glycol monoethyl ether

Ethylene dichloride Ethylene trichloride

Ethlylene oxide Fuel oil

Fluoroboric acid Glacial Acetic acid

Gasoline n-Heptane
Halothane Hydraulic fluids
Hexane Isopropyl benzene

Hydrogen peroxide Kerosene

Isopropyl ether Methylene chloride

Lubricating oils Nitric acid Naphthalene n-Octane Nitrobenzene Oleic acid

Octyl Cresol Perchloroethylene

Orange oil Polychlorinated biphenyls

Pentachlorophenol Sulfur dioxide
Pseudocumene Tetrachloroethane
Sulfur salts Sulfur trioxide
Tetrachlorohydrofuran Thionyl chloride

Sulfuric Acid Toluene

Thiophene Trichloroethane
Trichloroethylene Trichloroethylene Trichloroethylene Trichloroethylene Trichloroethylene

Xylene

APPENDIX C

DOSE CALCULATION OUTPUT

Parameter	Value	Description
Average Mass of Carbon in Drum m (g/drum)	105,725	Average of drum net weights
Tritium activity-concentration C _{f,H-3} (pCi/g)	441,176	Estimated activity-concentration based on forward calculation
Tritium activity-concentration $C_{f, Pb-210}$ (pCi/g)	110,294	Estimated activity-concentration based on forward calculation
Tritium activity-concentration $C_{f,Po-210}$ (pCi/g)	110,294	Estimated activity-concentration based on forward calculation
Activity per drum A _{d, H-3} (Ci/drum)	4.66E-02	$A_{d, H-3}$ (Ci/drum) = $C_{f, H-3}$ (pCi/g) x m (g/drum) x (1 Ci / 1E+12 pCi)
Activity per drum A _{d, Pb-210} (Ci/drum)	1.17E-02	$A_{d, Pb-210}$ (Ci/drum) = $C_{f, Pb-210}$ (pCi/g) x m (g/drum) x (1 Ci / 1E+12 pCi)
Activity per drum A _{d, Po-210} (Ci/drum)	1.17E-02	$A_{d, Po-210}$ (Ci/drum) = $C_{f, Po-210}$ (pCi/g) x m (g/drum) x (1 Ci / 1E+12 pCi)
Drums/shipment n _d	30	2 ft diameter drums packed in 7.3 ft x 18.4 ft trailer
Shipment Activity A _{s, H-3} (Ci/shipment)	1.40E+00	$A_{s, H-3}$ (Ci/shipment) = $A_{d, H-3}$ (Ci/drum) x n_d (drums/shipment)
Shipment Activity A _{s, Pb-210} (Ci/shipment)	3.50E-01	$A_{s, Pb-210}$ (Ci/shipment) = $A_{d, Pb-210}$ (Ci/drum) x n_d (drums/shipment)
Shipment Activity A _{s, Po-210} (Ci/shipment)	3.50E-01	$A_{s, Po-210}$ (Ci/shipment) = $A_{d, Po-210}$ (Ci/drum) x n_d (drums/shipment)
Maximum exposed individual dose per shipment D _s (mrem/shipment)	1.0	TSD-Dose output for receiving worker
Individual dose limit D _L (mrem/year)	1.0	DOE limit
Collective public dose per shipment CD _s (person-rem/shipment)	7.5	Sum of public dose (driver, public along route, TSD workers, offsite public)
Collective dose limit CD _L (person-rem/year)	10	DOE limit

Abbreviations:

Ci Curie ft feet g grams

LLNL Lawrence Livermore National Laboratory

mrem millirem pCi picocuries

pCi/g picocuries per gram rem Roentgen equivalent man

TSD-DOSE: A Radiological Dose Assessment Model for Treatment, Storage, and Disposal Facilities

Version 2.22 - September 1998

Site:

llnl

Shipment: H3 in Spent Carbon - Individual Back Calculation - without mixing

User:

		<u>TOTAL</u>	<u>EXTERNAL</u>	<u>INTERNAL</u>
Dose to:				
	Driver:	9.7E-03 mrem	7.0E-03 mrem	2.7E-03 mrem
F	Receiving worker:	9.9E-01 mrem	3.2E-02 mrem	9.6E-01 mrem
Inc	cineration worker:	9.5E-02 mrem	5.6E-02 mrem	3.9E-02 mrem
	Landfill worker:		2.3E-05 mrem	2.7E-02 mrem
	Offsite individual:	6.0E-01 mrem 2	Co person Deep Pa	(e/ Defan /r) 5.9E-04 p-rem
C	Offsite population:	2.5E+01 p-rem X 70	000 Person/miz (Ma	Tal Defaite)
W	orker Population:	8.4E-04 p-rem	2.5E-04 p-rem	5.9E-04 p-rem
		L+1	5E-4 =9.9E-4	
Dose from:		711	UNT 27.9E-9	p-rem

Transport to TSD facility:	9.7E-03 mrem	7.0E-03 mrem	not applicable
Receiving and sampling waste:	9.4E-01 mrem	7.5E-03 mrem	9.4E-01 mrem
Storage before processing:	2.5E-02 mrem	2.5E-02 mrem	not applicable
Incineration of waste:	2.7E-02 mrem	9.2E-05 mrem	2.7E-02 mrem
Burial at onsite landfill:	2.3E-05 mrem	2.3E-05 mrem	0.0E+00 mrem
Transport to offsite landfill:	not applicable	not applicable	not applicable
Incinerator maintenance:	4.3E-02 mrem	3.2E-02 mrem	1.1E-02 mrem

Doses due to each isotope (mrem - population dose in p-rem).

Isotope	Н3	Pb210+D	Po-210	
Activity	1.4E+00 Ci	3.5E-01 Ci	3.5E-01 Ci	
Release Fraction	9.00E-01	1.00E-02	1.00E-02	
Driver	2.7 E-06	5.9 E-03	3.8 E-03	
Receiving worker	7.8 E-01	1.4 E-01	7.6 E-02	
Incineration worker	2.7 E-05	7.6 E-02	1.9 E-02	
Landfill worker	2.7 E-05	1.6 E-02	1.1 E-02	
Offsite individual	1.3 E-03	5.1 E-01	9.3 E-02	
Offsite population	5.2 E-02	2.1 E+01	3.9 E+00	
Worker population	2.8 E-07	5.8 E-04	2.7 E-04	

Site Description

Operations included:

Operations excluded:

Transport to offsite landfill

Transport to TSD facility

Receiving and sampling waste

Storage before processing

Incineration of waste

Burial at onsite landfill

Incinerator maintenance

Parameters

The following are the adjustable parameters used to model each operation.

A (D) after a value indicates the default value was used.

Fraction solid waste = 1.000

Fraction liquid waste = 0.000

Pre-processed waste density = 5.1 E-01 g/cc

Post-processed waste density = 5.1 E-01 g/cc

Transport to TSD facility (4 steps)

Number of Workers: 1.0E+00 (D)

Truck bed dimensions (for all steps)

length: 1.76E+01 feet width: 7.00E+00 feet height: 3.00E+00 feet

Step A: Load and secure shipment

average distance: 3.00E+00 feet (D)

duration: 1.00E+00 hours

shielding thickness: 6.25E-02 inches (D)

Step B: Drive

average distance: 7.00E+00 feet (D)

duration: 3.50E+01 hours

shielding thickness: 1.25E-01 inches (D)

Step C: Rest

average distance: 2.00E+00 feet (D)

duration: 2.40E+01 hours

shielding thickness: 1.25E-01 inches (D)

Step D: Maintenance in transit

average distance: 3.00E+00 feet (D) duration: 2.00E+00 hours (D)

shielding thickness: 6.25E-02 inches (D)

Receiving and sampling waste (5 steps)

Number of Workers: 2.0E+00 (D)

Step A: Weight truck, inspect manifest

average distance: 5.00E+00 feet (D) duration: 1.00E+00 hours (D)

Receiving and sampling waste (cont'd)

Step B: Unload drums

average distance: 3.00E+00 feet (D) time per drum or pallet: 8.33E-02 hours (D)

Step C: Inspect and sample drums

average distance: 5.00E-01 feet (D) time per drum: 5.00E-02 hours

airborne respirable dust concentration: 1.0E+01 mg/m3 (D)

respiratory protection factor: 1.0E+01 (D)

Step D: Transfer solids to storage

average distance: 3.00E+00 feet (D) time per drum or pallet: 1.67E-01 hours (D)

Step E: Pump drummed oil to storage tank

average distance: 5.00E-01 feet (D) time per drum: 0.00E+00 hours

Storage before processing (3 steps)

Step A: Workers in solid waste storage area

average distance: 1.00E+00 feet duration: 2.50E+01 hours

Step B: Transfer solids out

average distance: 3.00E+00 feet (D) time per drum or pallet: 8.33E-02 hours (D)

Step C: Workers in liquid waste storage area

average distance: 3.00E+00 feet (D)

duration: 0.00E+00 hours

shielding thickness: 1.25E-01 inches (D)

Storage tank dimensions: length: 7.00E+00 feet (D) width: 7.00E+00 feet (D)

height: 1.20E+01 feet (D)

Incineration of waste (4 steps)

Step A: Incineration of waste

stack height: 1.0E+02 feet wind speed: 8.0E+00 mph exit velocity: 2.0E+01 mph stack diameter: 6.0E+00 feet

surrounding building height: 3.6E+01 feet

Plume entrainment due to building wake effect excluded

Step B: Collect residue in bin

average distance: 2.00E+00 feet (D) time per bin: 2.50E-01 hours (D) shielding thickness: 1.25E-01 inches (D) Number of Workers: 2.00E+00 (D)

Bin dimensions: length: 2.00E+01 feet width: 7.00E+00 feet height: 4.00E+00 feet

Incineration of waste (cont'd)

Step C: Transport bin to storage area

average distance: 2.00E+00 feet (D) time per bin: 2.50E-01 hours (D) shielding thickness: 1.25E-01 inches (D) Number of Workers: 2.00E+00 (D)

Bin dimensions: length: 2.00E+01 feet width: 7.00E+00 feet height: 4.00E+00 feet

Step D: Transport from storage area

average distance: 2.00E+00 feet (D) time per bin: 2.50E-01 hours (D) shielding thickness: 1.25E-01 inches (D) Number of Workers: 2.00E+00 (D)

Bin dimensions: length: 2.00E+01 feet width: 7.00E+00 feet height: 4.00E+00 feet

Burial at onsite landfill (4 steps)

Number of Workers: 1.0E+00 (D)

Dump truck bed dimensions for steps A, C, and D):

length: 2.50E+01 feet (D) width: 6.00E+00 feet (D) height: 3.00E+00 feet (D)

Step A: Unload waste to mixing pit

average distance: 5.00E+00 feet (D)

duration: 0.00E+00 hours

shielding thickness: 1.25E-01 inches (D)

airborne respirable dust concentration: 1.0E+00 mg/m3 (D)

respiratory protection factor: 1.0E+00 (D)

Step B: Mix waste in mixing pit

average distance: 1.00E+01 feet (D) duration: 0.00E+00 hours

cover thickness: 2.00E+00 inches (D)

Mixing pit dimensions: length: 1.00E+01 feet (D) width: 1.00E+01 feet (D) depth: 1.00E+01 feet (D)

cover thickness: 2.00E+00 inches (D)

Step C: Load truck and transport to landfill

average distance: 5.00E+00 feet (D) duration: 2.50E-01 hours (D) shielding thickness: 1.25E-01 inches (D)

Step D: Unload truck at landfill

average distance: 5.00E+00 feet (D) duration: 2.50E-01 hours (D)

shielding thickness: 1.25E-01 inches (D)

Incinerator maintenance (1 steps)

Number of Workers: 1.0E+00 (D)

Step A:

time per maintenance: 1.20E+01 hours (D)

liquids mass: 2.5E+07 lbs (D) solids mass: 2.5E+07 lbs (D)

airborne respirable dust concentration: 1.0E+01 mg/m3 (D)

respiratory protection factor: 5.0E+01 (D)

TSD-DOSE: A Radiological Dose Assessment Model for Treatment, Storage, and Disposal Facilities

Version 2.22 - September 1998

Site: IInl

Shipment: H3 in Spent Carbon - Individual Back Calculation - mixing only

User: tru

		<u>TOTAL</u>	EXTERNAL	<u>INTERNAL</u>
Dose to:				
	Driver:	not applicable	not applicable	not applicable
	Receiving worker:	not applicable	not applicable	not applicable
	Incineration worker:	• •	not applicable	not applicable
Mixing			9.2E-04 mrem	1.5E-01 mrem
, -	Offsite individual:	3.1E-04 mrem	TO doses w/o m	4.4.
			TO OCOSES W/O IN	IXING
	Worker Population:	1.5E-04 p-rem	9.2E-07 p-rem	1.5E-04 p-rem
Dose from:	:			
Tra	ansport to TSD facility:	not applicable	not applicable	not applicable
Receivin	g and sampling waste:	not applicable	not applicable	not applicable
Stora	age before processing:	not applicable	not applicable	not applicable
	Incineration of waste:	not applicable	not applicable	not applicable
MixINd .	Burial at onsite landfill: nsport to offsite landfill:	1.5E-01 mrem	9.2E-04 mrem	1.5E-01 mrem
^J Trar	nsport to offsite landfill:	not applicable	not applicable	not applicable
Inc	cinerator maintenance:	not applicable	not applicable	not applicable

Doses due to each isotope (mrem - population dose in p-rem).

нз	Pb210+D	Po-210
1.4E+00 Ci	3.5E-01 Ci	3.5E-01 Ci
9.00E-01	1.00E-02	1.00E-02
not applicable		
not applicable		
not applicable		
1.7 E-06	9.0 E-02	6.1 E-02
7.4 E-09	2.7 E-04	4.9 E-05
2.5 E-08	9.0 E-04	1.7 E-04
1.7 E-09	9.0 E-05	6.1 E-05
	1.4E+00 Ci 9.00E-01 not applicable not applicable not applicable 1.7 E-06 7.4 E-09 2.5 E-08	1.4E+00 Ci 3.5E-01 Ci 9.00E-01 1.00E-02 not applicable not applicable 1.7 E-06 9.0 E-02 7.4 E-09 2.7 E-04 2.5 E-08 9.0 E-04

Site Description

Operations included:

Burial at onsite landfill

Operations excluded:

Transport to TSD facility
Receiving and sampling waste
Storage before processing
Incineration of waste
Transport to offsite landfill
Incinerator maintenance

Parameters

The following are the adjustable parameters used to model each operation. A (D) after a value indicates the default value was used.

Fraction solid waste = 1.000
Fraction liquid waste = 0.000
Pre-processed waste density = 7.0 E-01 g/cc
Post-processed waste density = 1.4 E+00 g/cc

Burial at onsite landfill (4 steps)

Number of Workers: 1.0E+00 (D) **Dump truck bed dimensions for steps A, C, and D):**length: 2.50E+01 feet (D)

width: 6.00E+00 feet (D) height: 3.00E+00 feet (D)

Step A: Unload waste to mixing pit

average distance: 1.80E+01 feet duration: 1.00E+00 hours shielding thickness: 1.25E-01 inches (D)

airborne respirable dust concentration: 1.0E+00 mg/m3 (D)

respiratory protection factor: 1.0E+01

Step B: Mix waste in mixing pit

average distance: 4.00E+01 feet duration: 5.00E-01 hours (D) cover thickness: 2.00E+00 inches (D)

Mixing pit dimensions: length: 1.27E+01 feet width: 1.27E+01 feet depth: 1.27E+01 feet

cover thickness: 2.00E+00 inches (D)

Step C: Load truck and transport to landfill

average distance: 5.00E+00 feet (D)

duration: 0.00E+00 hours

shielding thickness: 1.25E-01 inches (D)

Step D: Unload truck at landfill

average distance: 5.00E+00 feet (D)

duration: 0.00E+00 hours

shielding thickness: 1.25E-01 inches (D)

RESRAD, Version 6.3 Tw Limit = 180 days 01/04/2007 16:56 Page 1
Summary : RESRAD GAC Shipment File: LLNL_GAC_Shipment.RAD

Table of Contents ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

Dose Conversion Factor (and Related) Parameter Summary	2
Site-Specific Parameter Summary	3
Summary of Pathway Selections	7
Contaminated Zone and Total Dose Summary	8
Total Dose Components	
Time = 0.000E+00	9
Time = 1.000E+00	10
Time = 3.000E+00	11
Time = 1.000E+01	12
Time = 3.000E+01	13
Time = 1.000E+02	14
Time = 3.000E+02	15
Time = 1.000E+03	16
Dose/Source Ratios Summed Over All Pathways	17
Single Radionuclide Soil Guidelines	17
Dose Per Nuclide Summed Over All Pathways	18
Soil Congentration Day Nuglide	10

Dose Conversion Factor (and Related) Parameter Summary File: FGR 13 MORBIDITY

	3	3	Current	3	Base	3	Param	eter	
Menu	Parameter	3	Value	3	Case*	3	Name	e	
ÄÄÄÄÄ	ĬĔĔĠĔĠĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	ÄÅŻ	, Kakakakaka	ÄÄÄ	KAKKAKKKK	ÀÀ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄ	ÄÄ
B-1	³ Dose conversion factors for inhalation, mrem/pCi:	3		3		3			
B-1	³ Pb-210+D	3	2.320E-02	3	1.360E-02	3	DCF2(1)	
	3	3		3		3			
D-1	³ Dose conversion factors for ingestion, mrem/pCi:	3		3		3			
D-1	³ Pb-210+D	3	7.276E-03	3	5.370E-03	3	DCF3(1)	
	3	3		3		3			
D-34	³ Food transfer factors:	3		3		3			
D-34	³ Pb-210+D , plant/soil concentration ratio, dimensionless	3	1.000E-02	3	1.000E-02	3	RTF(1,1)	
D-34	<pre>3 Pb-210+D , beef/livestock-intake ratio, (pCi/kg)/(pCi/d)</pre>	3	8.000E-04	3	8.000E-04	3	RTF(1,2)	
D-34	<pre>3 Pb-210+D , milk/livestock-intake ratio, (pCi/L)/(pCi/d)</pre>	3	3.000E-04	3	3.000E-04	3	RTF(1,3)	
	3	3		3		3			
D-5	³ Bioaccumulation factors, fresh water, L/kg:	3		3		3			
D-5	³ Pb-210+D , fish	3	3.000E+02	3	3.000E+02	3	BIOFAC	(1,	1)
D-5	³ Pb-210+D , crustacea and mollusks	3	1.000E+02	3	1.000E+02	3	BIOFAC	(1,	2)
ííííí	<u> </u>	ÍÏÍ	ÍÍÍÍÍÍÍÍÍÍ	ΪÍ	ííííííííííííííííííííííííííííííííííííííí	íïí	ííííííí	ííííí:	ÍÍ

*Base Case means Default.Lib w/o Associate Nuclide contributions.

RESKAD, Version 0.3 I W DIMIL - 100 days

01/04/2007 10.30 rage Summary : RESRAD GAC Shipment File: LLNL_GAC_Shipment.RAD

Site-Specific Parameter Summary

1	3	User	3		J Head	by RESRAD	,	Parameter
	,			Dofau1+		t from user input)		
Menu ³ Parameter ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		Input				-		Name
				1.000E+04				
R011 Area of contaminated zone (m**2)								AREA
R011 Thickness of contaminated zone (m)				2.000E+00				THICKO
R011 3 Length parallel to aquifer flow (m)				1.000E+02				LCZPAQ
R011 Basic radiation dose limit (mrem/yr)				3.000E+01				BRDL
R011 3 Time since placement of material (yr)				0.000E+00				TI
R011 Times for calculations (yr)				1.000E+00				T(2)
R011 Times for calculations (yr)				3.000E+00				T(3)
R011 Times for calculations (yr)				1.000E+01				T(4)
R011 ³ Times for calculations (yr)				3.000E+01				T(5)
R011 ' Times for calculations (yr)				1.000E+02				T(6)
R011 Times for calculations (yr)				3.000E+02				T(7)
R011 ' Times for calculations (yr)				1.000E+03				T(8)
R011 ' Times for calculations (yr)				0.000E+00				T(9)
R011 'Times for calculations (yr)	3	not used		0.000E+00				T(10)
3	3		3		3		3	
R012 Initial principal radionuclide (pCi/g): Pb-210	3	1.100E+05	3	0.000E+00	3		3	S1(1)
R012 'Concentration in groundwater (pCi/L): Pb-210	3	not used	3	0.000E+00	3		3 1	W1(1)
3	3		3		3		3	
R013 ³ Cover depth (m)	3	0.000E+00	3	0.000E+00	3		3	COVER0
R013 J Density of cover material (g/cm**3)	3	not used	3	1.500E+00	3		3	DENSCV
R013 3 Cover depth erosion rate (m/yr)	3	not used	3	1.000E-03	3		3 '	VCV
R013 ³ Density of contaminated zone (g/cm**3)	3	5.100E-01	3	1.500E+00	3		3]	DENSCZ
R013 ³ Contaminated zone erosion rate (m/yr)	3	1.000E-03	3	1.000E-03	3		3 '	VCZ
R013 ³ Contaminated zone total porosity	3	4.000E-01	3	4.000E-01	3		3 (TPCZ
R013 ³ Contaminated zone field capacity	3	2.000E-01	3	2.000E-01	3		3)	FCCZ
R013 3 Contaminated zone hydraulic conductivity (m/yr)	3	1.000E+01	3	1.000E+01	3		3]	HCCZ
R013 ³ Contaminated zone b parameter	3	5.300E+00	3	5.300E+00	3		3]	BCZ
R013 ³ Average annual wind speed (m/sec)	3	2.000E+00	3	2.000E+00	3		3 /	WIND
R013 3 Humidity in air (g/m**3)	3	not used	3	8.000E+00	3		3	HUMID
R013 ³ Evapotranspiration coefficient	3	5.000E-01	3	5.000E-01	3		3]	EVAPTR
R013 Precipitation (m/yr)	3	1.000E+00	3	1.000E+00	1		3]	PRECIP
R013 3 Irrigation (m/yr)	3	2.000E-01	,	2.000E-01	3		3]	RI
R013 ³ Irrigation mode	3	overhead	3	overhead	3		• :	IDITCH
R013 3 Runoff coefficient	3	2.000E-01	3	2.000E-01	3		,]	RUNOFF
R013 ³ Watershed area for nearby stream or pond (m**2)	3	not used	3	1.000E+06	3		3 (WAREA
R013 ³ Accuracy for water/soil computations	3	not used	3	1.000E-03	3		, I	EPS
1	3		3		3		3	
R014 3 Density of saturated zone (g/cm**3)	3	not used	3	1.500E+00	3		3 I	DENSAQ
R014 ³ Saturated zone total porosity	3	not used	3	4.000E-01	3		3 7	rpsz
R014 3 Saturated zone effective porosity	3	not used	3	2.000E-01	3		3 F	EPSZ
R014 ³ Saturated zone field capacity	3	not used	3	2.000E-01	3		3 J	FCSZ
R014 ³ Saturated zone hydraulic conductivity (m/yr)	3	not used	3	1.000E+02	3		3 F	HCSZ
R014 3 Saturated zone hydraulic gradient	3	not used	3	2.000E-02	3		3 F	HGWT
R014 ³ Saturated zone b parameter	3	not used	3	5.300E+00	3		, I	3SZ
R014 's Water table drop rate (m/yr)				1.000E-03			, ,	/WT
R014 'Well pump intake depth (m below water table)				1.000E+01			3 I	OWIBWT
R014 3 Model: Nondispersion (ND) or Mass-Balance (MB)		not used			3			MODEL
R014 ³ Well pumping rate (m**3/yr)				2.500E+02	3		ι	
3	3		3		3		3	
R015 'Number of unsaturated zone strata	3 -	not used	3	1	3	:	3 V	I S

RESKAD, Version 6.3

1" Limit = 180 days 01/04/2007 10.50 Fage Summary : RESRAD GAC Shipment File: LLNL_GAC_Shipment.RAD

3		¹ User	3	3 Used by RESRAD	³ Parameter
Menu ³	Parameter		3 Default	3 (If different from user input	
	TOTOMBORS ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	2		•	
	Jnsat. zone 1, thickness (m)	3 not used			, н(1)
	<pre>Jnsat. zone 1, soil density (g/cm**3)</pre>	not used			3 DENSUZ(1)
	Insat. zone 1, total porosity	3 not used			' TPUZ(1)
	Insat. zone 1, effective porosity	³ not used			3 EPUZ(1)
	Unsat. zone 1, field capacity	not used			3 FCUZ(1)
	Insat. zone 1, soil-specific b parameter	3 not used			3 BUZ(1)
	<pre>Jnsat. zone 1, hydraulic conductivity (m/yr)</pre>	not used			3 HCUZ(1)
3			3	3	3
R016 3 D	Distribution coefficients for Pb-210	3	3	3	3
R016 3	Contaminated zone (cm**3/g)	3 1.000E+02	3 1.000E+02	3	3 DCNUCC(1)
R016 3	Unsaturated zone 1 (cm**3/g)	not used	3 1.000E+02	3	3 DCNUCU(1,1)
R016 3	Saturated zone (cm**3/g)	3 not used	3 1.000E+02	3 ===	DCNUCS(1)
R016 3	Leach rate (/yr)	3 0.000E+00	3 0.000E+00	3 4.574E-03	3 ALEACH(1)
R016 3	Solubility constant	3 0.000E+00	3 0.000E+00	not used	3 SOLUBK(1)
3	•	3	3	3	3
R017 ³ I	Inhalation rate (m**3/yr)	3 not used	3 8.400E+03	3	3 INHALR
	Mass loading for inhalation (g/m**3)	3 not used	1.000E-04	3	3 MLINH
	Exposure duration	3 .000E+01	3.000E+01	1	3 ED
	Shielding factor, inhalation	³ not used	3 4.000E-01	3	3 SHF3
	Shielding factor, external gamma	3 7.000E-01	3 7.000E-01	3	¹ SHF1
R017 ³ F	Fraction of time spent indoors	3 0.000E+00	3 5.000E-01	3	3 FIND
R017 ³ F	Fraction of time spent outdoors (on site)	3 1.000E+00	3 2.500E-01	3	3 FOTD
R017 3 S	Shape factor flag, external gamma	3 1.000E+00	3 1.000E+00	3 >0 shows circular AREA.	³ FS
R017 ³ R	Radii of shape factor array (used if FS = -1):	1	3	3	3
R017 3	Outer annular radius (m), ring 1:	not used	3 5.000E+01	3	3 RAD_SHAPE(1)
R017 3	Outer annular radius (m), ring 2:	³ not used	3 7.071E+01	3	RAD_SHAPE(2)
R017 3	Outer annular radius (m), ring 3:	3 not used	3 0.000E+00	3	RAD_SHAPE(3)
R017 3	Outer annular radius (m), ring 4:	3 not used	3 0.000E+00	3	RAD_SHAPE(4)
R017 3	Outer annular radius (m), ring 5:	3 not used	3 0.000E+00	3	RAD SHAPE(5)
R017 3	Outer annular radius (m), ring 6:	not used	0.000E+00	3	RAD_SHAPE(6)
R017 3	Outer annular radius (m), ring 7:	not used	3 0.000E+00	3	3 RAD_SHAPE(7)
R017 3	Outer annular radius (m), ring 8:	3 not used	3 0.000E+00	3	3 RAD_SHAPE(8)
R017 3	Outer annular radius (m), ring 9:	³ not used	0.000E+00	J	RAD_SHAPE(9)
R017 3	Outer annular radius (m), ring 10:	3 not used			3 RAD_SHAPE(10)
R017 3	Outer annular radius (m), ring 11:	not used	3 0.000E+00	3	RAD_SHAPE(11)
R017 3	Outer annular radius (m), ring 12:	not used	3 0.000E+00	3	3 RAD_SHAPE(12)
3		3	3	3	3
R017 ³ F	Fractions of annular areas within AREA:	3	3	3	3
R017 '	Ring 1	not used	3 1.000E+00	J	³ FRACA(1)
R017 3	Ring 2	not used	3 2.732E-01	3	³ FRACA(2)
R017 3	Ring 3	3 not used	3 0.000E+00	3	3 FRACA (3)
R017 ³	Ring 4	3 not used	3 0.000E+00	3	³ FRACA(4)
R017 3	Ring 5	not used	0.000E+00	3	FRACA(5)
R017 3	Ring 6	not used	0.000E+00	·	³ FRACA(6)
R017 3	Ring 7	3 not used	3 0.000E+00	3	FRACA(7)
R017 ³	Ring 8	not used	0.000E+00	J	³ FRACA(8)
R017 ³	Ring 9	3 not used	3 0.000E+00	3	³ FRACA(9)
R017 3	Ring 10	³ not used	3 0.000E+00	3	3 FRACA(10)
R017 3	Ring 11	3 not used	3 0.000E+00	3	³ FRACA(11)
R017 3	Ring 12	³ not used	0.000E+00	J	³ FRACA(12)
,		3	3	3	3

RESEAD, Version 6.3

1« Limit = 180 days 01/04/2007 10:30 Fage File: LLNL_GAC_Shipment.RAD Summary : RESRAD GAC Shipment

3		, User	3	3	Used by RESRAD	3 P	arameter
Menu ³	Parameter	3 Input	3 Defau	1t ³	(If different from user input) 3	Name
AÄÄÄÄA A	ĨĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ	Kaaaaaaaaa	ÄÄÄÄÄÄÄÄÄ	ääää å	Kakaakakakakakakakakakakakakakakakakaka	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄ
R018 3	Fruits, vegetables and grain consumption (kg/yr)	³ not used	3 1.600E	+02 3		3 DI	ET(1)
R018 3	Leafy vegetable consumption (kg/yr)	³ not used	3 1.400E	+01 3		³ DI	ET(2)
R018 3	Milk consumption (L/yr)	³ not used	3 9.200E	+01 3		, DI	ET(3)
R018 3	Meat and poultry consumption (kg/yr)	3 not used	3 6.300E	+01 3		3 DI	ET (4)
R018 3	Fish consumption (kg/yr)	³ not used	3 5.400E	+00 3		3 DI	ET (5)
R018	Other seafood consumption (kg/yr)	3 not used	3 9.000E	-01 ³		3 DI	ET(6)
R018 3	Soil ingestion rate (g/yr)	3 not used	3 3.650E	+01 3		3 SO	IL
R018 3	Drinking water intake (L/yr)	3 not used	3 5.100E	+02 3		3 DW	II
R018 3	Contamination fraction of drinking water	3 not used	3 1.000E	+00 3		³ FD	W
R018 3	Contamination fraction of household water	not used	3 1.000E	+00 3		³ FH	.HW
R018 3	Contamination fraction of livestock water	3 not used	3 1.000E	+00 3		³ FL	W
R018 3	Contamination fraction of irrigation water	3 not used	3 1.000E	+00 3		³ FI	RW
R018 3	Contamination fraction of aquatic food	3 not used	3 5.000E	-01 ³		³ FR	.9
R018 3	Contamination fraction of plant food	3 not used	3 – 1	3		³ FP	LANT
R018 3	Contamination fraction of meat	3 not used	3-1	3		³ FM	EAT
R018 3	Contamination fraction of milk		³ – 1	3		³ FM	ILK
3		3	3	3		3	
R019 3	Livestock fodder intake for meat (kg/day)	3 not used	3 6.800E-	+01 ³		3 LF	15
R019 3	Livestock fodder intake for milk (kg/day)	3 not used				, LF	16
R019 3	Livestock water intake for meat (L/day)	not used				3 LW	
	Livestock water intake for milk (L/day)	3 not used				3 LW	
	Livestock soil intake (kg/day)	3 not used				³ LS	
	Mass loading for foliar deposition (g/m**3)	3 not used				3 ML	
	Depth of soil mixing layer (m)		3 1.500E			3 DM	
	Depth of roots (m)	3 not used				3 DR	
	Drinking water fraction from ground water	3 not used				³ FG	
	Household water fraction from ground water	not used				³ FG	
	Livestock water fraction from ground water	not used		-		• FG	
	Irrigation fraction from ground water		3 1.000E+			³ FG	WIR
3		3	3	3		3	
		not used				3 YV	
	Wet weight crop yield for Leafy (kg/m**2)	not used				, AA	
	Wet weight crop yield for Fodder (kg/m**2)	not used				, AA	
	Growing Season for Non-Leafy (years)	not used				³ TE	
	Growing Season for Leafy (years)	not used				³ TE	
	Growing Season for Fodder (years)	not used not used				3 TE	
	Translocation Factor for Non-Leafy	not used not used				TI.	
	Translocation Factor for Leafy						
	Translocation Factor for Fodder	not used not used				J TI	
	•	not used					RY(1) RY(2)
	Dry Foliar Interception Fraction for Leafy	not used					RY(3)
	Dry Foliar Interception Fraction for Fodder	not used					ET(1)
	<u> </u>	not used					ET(2)
	Wet Foliar Interception Fraction for Leafy Wet Foliar Interception Fraction for Fodder	not used					ET(2) ET(3)
		not used				3 WL	
KIDB 3	Weathering Removal Constant for Vegetation	inot used	3	, 101		3	
	C-12 concentration in water (g/cm**3)	not used				3 C12	2WTR
	C-12 concentration in water (g/cm 3) C-12 concentration in contaminated soil (g/g)	not used				3 C12	
	Fraction of vegetation carbon from soil	not used				3 CS	
	Fraction of vegetation carbon from air	not used				CA:	
C14 -	reaction of vegetation carbon from air	not useu	J. OU OE-	O.T.		CA.	

RESEAD, VEISION 0.3

Summary : RESRAD GAC Shipment File: LLNL_GAC_Shipment.RAD

3		3	User	3		3	Used by RESRAD	3	Parameter
Menu ³ Parameter		3	Input	3	Default	3	(If different from user input)	3	Name
<u> Aäkäkäkäkäkäkäkäkäkäkäkäkäkäkäkäkäääääää</u>	Kararakakakakakaka	ÅÄÄÄ	ÄÄÄÄÄÄÄ	ÄÅŻ	ÄÄÄÄÄÄÄÄÄ	ÄÅÄ	ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	ÄÄ.	ÄÄÄÄÄÄÄÄÄÄÄÄÄ
C14 3 C-14 evasion layer thickness in	soil (m)	, no	t used	3	3.000E-01	3		3	DMC
C14 ³ C-14 evasion flux rate from soil	(1/sec)	, no	t used	3	7.000E-07	3		3	EVSN
C14 ³ C-12 evasion flux rate from soil	(1/sec)	, no	t used	3	1.000E-10	3		3	REVSN
C14 ' Fraction of grain in beef cattle	feed	³ no	t used	3	8.000E-01	3		,	AVFG4
C14 ' Fraction of grain in milk cow fee	ed	³ no	t used	3	2.000E-01	3		,	AVFG5
C14 3 DCF correction factor for gaseou	s forms of C14	³ no	t used	3	0.000E+00	3		3 (CO2F
3		3		3		3		3	
STOR ³ Storage times of contaminated for	odstuffs (days):	3		3		3		3	
STOR ³ Fruits, non-leafy vegetables, a	and grain	· 1.	400E+01	3	1.400E+01	3		3	STOR_T(1)
STOR 3 Leafy vegetables	;	³ 1.	000E+00	3	1.000E+00	3		3 5	STOR_T(2)
STOR 3 Milk		1 .	000E+00	3	1.000E+00	3		3 :	STOR_T(3)
STOR ³ Meat and poultry	;	3 2.	000E+01	3	2.000E+01	3		3 (STOR_T(4)
STOR 3 Fish	:	з 7.	000E+00	3	7.000E+00	3	- -	3 9	STOR_T(5)
STOR ³ Crustacea and mollusks	:	з 7.	000E+00	3	7.000E+00)		3 5	STOR_T(6)
STOR ' Well water	:	1.	000E+00	,	1.000E+00	,		3 (STOR_T(7)
STOR ' Surface water	:	1.	000E+00	>	1.000E+00	3		3 (STOR_T(8)
STOR ³ Livestock fodder	;	34.	500E+01	3	4.500E+01	3		3 9	STOR_T(9)
3	;	3		3		3		,	
R021 3 Thickness of building foundation	(m)	3 no	t used	3	1.500E-01	3		3]	FLOOR1
R021 3 Bulk density of building foundat	ion (g/cm**3)	on no	t used	3	2.400E+00	3		3 I	DENSFL
R021 ³ Total porosity of the cover mate:	rial :	3 no	t used	3	4.000E-01	3		3 7	TPCV
R021 ³ Total porosity of the building fo	oundation :	no r	t used	3	1.000E-01	3		3 J	rpfL
R021 3 Volumetric water content of the o	cover material	no	t used	3	5.000E-02	3		3]	PH2OCV
R021 3 Volumetric water content of the	foundation :	no	t used	3	3.000E-02	3		3 I	PH2OFL
R021 • Diffusion coefficient for radon of	gas (m/sec):	3		3		3		3	
R021 ³ in cover material	1	no!	t used	3	2.000E-06	3		3 I	DIFCV
R021 3 in foundation material	3	no!	t used	3	3.000E-07	3		3 I	DIFFL
R021 ³ in contaminated zone soil	3	no!	t used	3	2.000E-06	3		3 I	DIFCZ
R021 ' Radon vertical dimension of mixim	ng (m)	not	t used	3	2.000E+00	3		3 F	łMI X
R021 3 Average building air exchange rat	e (1/hr)	no!	t used	3	5.000E-01	3		3 F	REXG
R021 3 Height of the building (room) (m)	,	no	t used	3	2.500E+00	3		3 F	IRM
R021 3 Building interior area factor	3	not	t used	3	0.000E+00	3		3 F	FAI
R021 3 Building depth below ground surfa	ace (m)	not	t used	3 _	1.000E+00	3		3 I	OMFL
R021 3 Emanating power of Rn-222 gas	3	not	t used	3	2.500E-01	3		3 E	EMANA (1)
R021 3 Emanating power of Rn-220 gas	3	not	t used	3	1.500E-01	3		3 E	EMANA (2)
3	3	3		3		3		3	
TITL 1 Number of graphical time points	3	3	32	3		3		3 N	IPTS
TITL ³ Maximum number of integration pos	ints for dose	3	17	3		3		3 L	YMAX
TITL ³ Maximum number of integration pos	ints for risk	3	257	3		3		3 K	XAMYX
111111 1 11111111111111111111111111111	íííííííííííííííííííííííííííííííííííííí	ľííí:	ííííííííí	ΪÍ	ííííííííííí	ÍÏÍÍ	í í í í í í í í í í í í í í í í í í í	ΪÍ	ííí íí ííííííííííííííííííííííííííííííí

RESRAD, Version 6.3 Tw Limit = 180 days U1/04/2007 16:56 Page /
Summary : RESRAD GAC Shipment File: LLNL_GAC_Shipment.RAD

Summary of Pathway Selections

Pathway 'User Selection

l external gamma	3	active
2 inhalation (w/o radon	1) 3	suppressed
3 plant ingestion	3	suppressed
4 meat ingestion	7	suppressed
5 milk ingestion	3	suppressed
6 aquatic foods	,	suppressed
7 drinking water	,	suppressed
8 soil ingestion	3	suppressed
9 radon	3	suppressed
Find peak pathway doses	3	suppressed
iíiíiííííííííííííííííííííííííííííííííí	ÍÏÍÍ	ííííííííííííííííííííííííííííííííííííííí

KESKAD, VEISION 0.3 I TIMIL - 100 days 01/04/200/ 10:30 Page Summary : RESRAD GAC Shipment File: LLNL_GAC_Shipment.RAD

Pb-210 1.100E+05

Area: 4.91 square meters

Thickness: 2.13 meters
Cover Depth: 0.00 meters

Total Dose TDOSE(t), mrem/yr

Basic Radiation Dose Limit = 2.500E+01 mrem/yr

Total Mixture Sum M(t) = Fraction of Basic Dose Limit Received at Time (t)

t (years): 0.000E+00 1.000E+00 3.000E+00 1.000E+01 3.000E+01 1.000E+02 3.000E+02 1.000E+03

 $\texttt{TDOSE(t):} \quad 2.181\texttt{E} + 02 \quad 2.105\texttt{E} + 02 \quad 1.960\texttt{E} + 02 \quad 1.527\texttt{E} + 02 \quad 7.483\texttt{E} + 01 \quad 6.167\texttt{E} + 00 \quad 4.931\texttt{E} - 03 \quad 7.128\texttt{E} - 14 \quad 4.931\texttt{E} - 14 \quad 4.931\texttt$

M(t): 8.724E+00 8.418E+00 7.839E+00 6.107E+00 2.993E+00 2.467E-01 1.973E-04 2.851E-15

Maximum TDOSE(t): 2.181E+02 mrem/yr at t = 0.000E+00 years

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Grou:	nd	Inhala	tion	Rad	on	Pla	nt	Mea	t	Mil1	k	Soi	1
Radio-	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	2.181E+02	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ííííííí	íííííííííí	ÍÍÍÍÍÍ	ifífífífí	ÍÍÍÍÍÍ	íííííííííí	ÍÍÍÍÍÍ	ííííííííí	íííííí	ííííííííí	íííííí	íííííííííí	íííííí	íííííííííí	fíííí:
Total	2.181E+02	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

	Wate	er	Fish	n	Rado	on	Pla	nt	Mea	t	Mill	k	All Pat	hways*
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	2.181E+02	1.0000
ííííííí	iíiíiíííí	íííííí	íííííííííí	ÍÍÍÍÍÍ	íííííííííí	Í ÍÍÍÍÍ	ííííííííí	íííííí	íí íííí ííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	í íí ííí	íííííí íííí	fífff:
Total	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	2.181E+02	1.0000

 $[\]ensuremath{^{\star}} \mbox{Sum}$ of all water independent and dependent pathways.

RESRAD, Version 6.3 Tw Limit = 180 days 01/04/2007 16:56 Page 10
Summary : RESRAD GAC Shipment File: LLNL_GAC_Shipment .RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhala	tion	Rad	on	Pla	nt	Mea	t	Mil	k	Soi	1
Radio-	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	2.105E+02	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	ííííííííí	íííííí	ííííííííí	íííííí	ííííííííí	íííííí	íííííííííí	íííííí	íííííííííí	ÍÍÍÍÍÍ	íííííííííí	íííííí	íííííííííí	ííííí:
Total	2.105E+02	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years

	Wate	er	Fisl	n	Rad	on	Pla	nt	Mea	t	Mill	k	All Pat	hways*
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	iäääääi
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	2.105E+02	1.0000
ííííííí	ífffífífí	ÍÍÍÍÍÍ	ííííííííí	íííííí	ííííííííí	íííííí	fíííííííí	íííííí	ííííííííí	íííííí	íííííííííí	ffffff	fíííííííí	ííííí:
Total	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	2.105E+02	1.0000

^{*}Sum of all water independent and dependent pathways.

RESRAD, Version 6.3 T« Limit = 180 days 01/04/200/ 16:56 Page 11
Summary : RESRAD GAC Shipment File: LLNL_GAC_Shipment.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 3.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Groun	nđ	Inhala	tion	Rade	on	Pla	nt	Mea	t	Mil:	k	Soi	1
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ĬÄÄÄÄÄ
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ĬÄÄÄÄ <i>i</i>
Pb-210	1.960E+02	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ííííííí	í í í í í í í í í í í	íííííí	íííííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	íííííííííí	íííííí	íííííííííí	ÍÍÍÍÍÍ	ííííííííí	ÍÍÍÍÍÍ	íííííííííí	fffff:
Total	1.960E+02	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 3.000E+00 years

	Wat	er	Fis	h	Rad	on	Pla	nt	Mea	t	Mill	k	All Pat	:hways*
Radio-	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	Käääääi
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	1.960E+02	1.0000
ííííííí	íííííííííí	íííííí	ííííííííí	fífífí	ffíffffff	ÍÍÍÍÍÍ	íííííííííí	ffffff	ííííííííí	íííííí	ííííííííí	íííííí	ííííííííí	ííííí:
Total	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	1.960E+02	1.0000

^{*}Sum of all water independent and dependent pathways.

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhala	tion	Rade	on	Pla	nt	Mea	5	Mil)	ς .	Soi	1
Radio-	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ĬÄÄÄÄÄ
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	1.527E+02	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.000
ííííííí	ííííííííí	íííííí	íííííííííí	ÍÍÍÍÍÍ	ííííííííí	ÍÍÍÍÍÍ	ííííííííí	íííííí	ííííííííí	fííííí	ííííííííí	ÍÍÍÍÍÍ	ííííííííí	ííííí:
Total	1.527E+02	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+01 years

	Wat	er	Fish	n	Rad	on	Pla	nt	Mea	t	Mill	k	All Pati	hways*
Radio-	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	1.527E+02	1.0000
ííííííí	íííííííííí	ííííí í	í íííííí íí	íííííí	íí ííííííí	íííííí	íííííííííí	íííííí	í ííííííííí	íííííí	íííííííííí	ÍÍÍÍÍÍ	íííííííííí	ííííí:
Total	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	1.527E+02	1.0000

 $[\]ensuremath{^{\star}} \ensuremath{\text{Sum}}$ of all water independent and dependent pathways.

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 3.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

	Groun	nd	Inhalat	tion	Rade	on	Pla	nt	Mea	t	Mill	k	Soi	1
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ĬÄÄÄÄÄ
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	7.483E+01	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ííííííí	ííííííííí	íííííí	íííííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	íÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ííííííííííí	íííííí	í íííí ííííí	íííííí	ÍÍÍÍÍÍÍÍÍ	fíííí:
Total	7.483E+01	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.000(

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 3.000E+01 years

	Wate	er	Fish	n	Rado	on	Pla	nt	Meat	;	Mill	ς .	All Pati	hways*
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	, Käääää
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ĬÄÄÄÄ <i>Ĭ</i>
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000 E +00	0.0000	0.000E+00	0.0000	7.483E+01	1.0000
íííííííí	í í í í í í í í í í í	ÍÍÍÍÍÍ	íííííííííí	íííííí	ífífífífí	íííííí	í fífífífí	íííííí	íííííííííí	íííííí	íííííííííí	íííííí	fííííííííí	ÍÍÍÍÍ:
Total	0.000E+00	0.0000	0.000 E+ 00	0.0000	0.000 E+ 00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	7.483E+01	1.0000

^{*}Sum of all water independent and dependent pathways.

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+02 years

Water Independent Pathways (Inhalation excludes radon)

	Groun	nd	Inhalat	cion	Rade	on	Plan	nt	Meat	5	Mil	ς.	Soi	1
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	6.167E+00	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ííííííí	ííííííííí	íííííí	íííííííííí	íííííí	ííííííííí	íííííí	íííííííííí	ÍÍÍÍÍÍ	ííííííííí	íííííí	ííííííííí	íííííí	íííííííííí	ÍÍÍÍÍ:
Total	6.167E+00	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.000E+02 years

	Water		Fish		Radon		Pla	Plant		Meat		Milk		hways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	6.167E+00	1.0000
ííííííí	<i>íííííííí</i> íí	íííííí	íííííííííí	ÍÍÍÍÍÍ	íííííííííí	íííííí	ííííííííí	íííííí	íííííííííí	ÍÍÍÍÍÍ	íííííííííí	íííííí	ííííííííí	ííííí:
Total	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	6.167E+00	1.000(

 $[\]mbox{^{*}}\mbox{Sum}$ of all water independent and dependent pathways.

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+02 years

Water Independent Pathways (Inhalation excludes radon)

	Ground		Inhalation		Radon		Pla	Plant		t	Milk		Soil	
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÁÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	4.931E-03	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ííííííí	íííííííííí	ÍÍÍÍÍÍ	ííííííííí	íííííí	íííííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	íííííí	ííííííííí	íííííí	ííííííííí	íííííí	ííííííííí	ííííí:
Total	4.931E-03	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 3.000E+02 years

	Water		Fish		Radon		Plant		Meat		Milk		All Pathways*	
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄ											
Nuclide	mrem/yr	fract.	mrem/yr	fract										
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	0.000E+00	0.0000	4.931E-03	1.0000										
ííííííí	ííííííííí	ÍÍÍÍÍÍ	íííííííííí	íííííí	ííííííííí	íííííí	íííííííííí	íííííí	ííííííííí	ÍÍÍÍÍÍ	íííííííííí	íííííí	ííííííííí	ííííí:
Total	0.000E+00	0.0000	4.931E-03	1.0000										

^{*}Sum of all water independent and dependent pathways.

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.000E+03 years

Water Independent Pathways (Inhalation excludes radon)

	Ground		Inhalation		Radon		Pla	Plant		5	Milk		Soil	
Radio-	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	7.128E-14	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ííííííí	ííííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	íííííí	íííííííííí	íííííí	íííííííííí	íííííí	ííííííííí	íííííí	íííííííííí	íííííí	íííííííííí	fíííí:
Tota1	7.128E-14	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0001

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.000E+03 years

	Water		Fish		Radon		Pla	Plant		:	Milk		All Pathways*	
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	7.128E-14	1.0000
ííííííí	ííííííííí	ÍÍÍÍÍÍ	ííííííííí	íííííí	ííííííííí	íííííí	ííííííííí	íííííí	í ííííííííí	íííííí	íííííííííí	ÍÍÍÍÍÍ	íííííííííí	fffff:
Total	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	7.128E-14	1.0000

 $^{{}^{\}star} {} {}^{\mathrm{Sum}}$ of all water independent and dependent pathways.

Dose/Source Ratios Summed Over All Pathways Parent and Progeny Principal Radionuclide Contributions Indicated

Single Radionuclide Soil Guidelines G(i,t) in pCi/g
Basic Radiation Dose Limit = 2.500E+01 mrem/yr

Nuclide

*At specific activity limit

Summed Dose/Source Ratios DSR(i,t) in (mrem/yr)/(pCi/g) and Single Radionuclide Soil Guidelines G(i,t) in pCi/g at tmin = time of minimum single radionuclide soil guideline and at tmax = time of maximum total dose = 0.000E+00 years

 Nuclide
 Initial
 tmin
 DSR(i,tmin)
 G(i,tmin)
 DSR(i,tmax)
 G(i,tmax)

 (i)
 (pCi/g)
 (pCi/g)
 (pCi/g)
 (pCi/g)

 AXAXAXAX
 AXAXAXAXAX
 AXAXAXAXAXXX
 AXAXAXAXXX
 AXAXAXXXX

 Pb-210
 1.100E+05
 0.000E+00
 1.983E-03
 1.261E+04
 1.983E-03
 1.261E+04

 fffffff
 fffffffff
 ffffffffff
 fffffffff
 fffffffff
 ffffffff

Individual Nuclide Dose Summed Over All Pathways
Parent Nuclide and Branch Fraction Indicated

Nuclide Parent THF(i) DOSE(j,t), mrem/yr

Individual Nuclide Soil Concentration
Parent Nuclide and Branch Fraction Indicated

Nuclide Parent THF(i) S(j,t), pCi/g

RESCALC.EXE execution time = 0.38 seconds

======== RISKIND Program Output, Version 1.11 ======== Page: 1

Title : LLNL GAC shipment Date/Time : 01/02/07 15:20

Input File : c:\riskind\input\llnlgac.inp

Output File : output\llnlgac.out

Problem Description

Individual Receptors

Routine Calculations

Note: * next to input description signifies

a data dependent default value

======== RISKIND Program Output, Version 1.11 ======= Page: 2

Title : LLNL GAC shipment Date/Time : 01/02/07 15:20

Input File : c:\riskind\input\llnlgac.inp

Output File : output\llnlgac.out

Shipment Parameters

Transport Mode [IMOD]: Truck
Population Zone [IZONE]: Suburban

Dose at 1 m [TIDX]: 0.02 mrem/hr Measurement Offset [TIOFF]: 0.00 m Gamma Fraction [FRAD(1)]: 1.00 Neutron Fraction [FRAD(2)]: 0.00 Cask Length [HSIZE]: 5.40 m

Cask Radius [RSIZE]: 0.79 m
Traveling speed [SPEED]*: 88.00 km/hr

Individual type [INDTYPE]: Public

Risk Conversion Factors

Non-Fatal Cancers/rem: 1.0E-04 Fatal Cancers/rem: 5.0E-04 Genetic Effects/rem: 1.3E-04

#	Individual Name	Stop Distance [DISTSTOP] [km]	Stop Time [TSTP] [hr]	Passing Distance [DISTPASS] [km]
1	Individual 1	2.0E-03	1.00	2.0E-03

Ti Da In Ou ===	te/Time : put File : tput File : ====================================	LLNL GAC 01/02/07 c:\riski output\1 ========	shipment 15:20 .nd\input\l lnlgac.out	.lnlgac.inp ; Routine Pro	oblem ====	=======================================	==== Page:	3
			========	====== Sto	====== ac	=======		
					Expected			
			Dose	-	Cancer	-		
#	Individual	Name	(rem)	Cancers	Fatalities	Effects		
							_	
1	Individual	1	1.2E-05	1.2E-09	6.2E-09	1.6E-09		
							-	
#	Individual	Name	 Dose (rem)	Expected Non-Fatal	ing ====== Expected Cancer Fatalities	Expected Genetic		

1 Individual 1 1.2E-09 1.2E-13 6.2E-13 1.6E-13

APPENDIX D

GROUND WATER AND LANDFILL SIMULATION OUTPUT

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 1
Summary: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Table of Contents

Dose Conversion Factor (and Related) Parameter Summary	2
Site-Specific Parameter Summary	3
Summary of Pathway Selections	7
Contaminated Zone and Total Dose Summary	8
Total Dose Components	
Time = 0.000E+00	9
Time = 1.000E+00	10
Time = 2.000E+00	11
Time = 4.000E+00	12
Time = 1.000E+01	13
Time = 4.000E+01	14
Time = 1.000E+02	15
Time = 1.000E+03	16
Dose/Source Ratios Summed Over All Pathways	17
Single Radionuclide Soil Guidelines	17
Dose Per Nuclide Summed Over All Pathways	18
Soil Concentration Per Nuclide	18

- - .

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 2 Summary : RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Dose Conversion Factor (and Related) Parameter Summary File: FGR 13 MORBIDITY

3	3 Current 3 Base 3 Parameter
Menu ³ Parameter	³ Value ³ Case* ³ Name
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	<i>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</i>
B-l ³ Dose conversion factors for inhalation, mrem/pCi:	3 3
B-1 ³ H-3	3 6.400E-08 3 6.400E-08 , DCF2(1)
B-1 ³ Pb-210+D	3 2.320E-02 3 1.360E-02 3 DCF2(2)
1	3 3
D-l ³ Dose conversion factors for ingestion, mrem/pCi:	3 3
D-1 ³ H-3	3 6.400E-08 3 6.400E-08 3 DCF3(1)
D-1 * Pb-210+D	³ 7.276E-03 ³ 5.370E-03 ³ DCF3(2)
3	3 3
D-34 ³ Food transfer factors:	3 3
D-34 ³ H-3 , plant/soil concentration ratio, dimensionles	s 3 4.800E+00 3 4.800E+00 3 RTF(1,1)
D-34 ³ H-3 , beef/livestock-intake ratio, (pCi/kg)/(pCi/d) 3 1.200E-02 3 1.200E-02 3 RTF(1,2)
D-34 ³ H-3 , milk/livestock-intake ratio, (pCi/L)/(pCi/d)	3 1.000E-02 3 1.000E-02 3 RTF(1,3)
D-34 ³	3 3
D-34 ³ Pb-210+D , plant/soil concentration ratio, dimensionles	s '1.000E-02 '3 1.000E-02 '3 RTF(2,1)
D-34 3 Pb-210+D , beef/livestock-intake ratio, (pCi/kg)/(pCi/d	3 8.000E-04 3 8.000E-04 3 RTF(2,2)
D-34 3 Pb-210+D , milk/livestock-intake ratio, (pCi/L)/(pCi/d)	3 3.000E-04 3 3.000E-04 3 RTF(2,3)
3	3 3
D-5 3 Bioaccumulation factors, fresh water, L/kg:	3 3
D-5 ³ H-3 , fish	3 1.000E+00 3 1.000E+00 3 BIOFAC(1,1)
D-5 3 H-3 , crustacea and mollusks	3 1.000E+00 3 1.000E+00 3 BIOFAC(1,2)
D-5 3	3 3
D-5 ³ Pb-210+D , fish	3 3.000E+02 3 3.000E+02 3 BIOFAC(2,1)
D-5 ³ Pb-210+D , crustacea and mollusks	3 1.000E+02 3 1.000E+02 3 BIOFAC(2,2)
111111111111111111111111111111111111111	111111111111111111111111111111111111111

*Base Case means Default.Lib w/o Associate Nuclide contributions.

RESRAD, Version 6.3 T« Limit = 180 days

02/01/2007 14:43 Page 3 Summary : RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Site-Specific Parameter Summary

3	³ User ³	3 Used by RESRAD	³ Parameter
Menu ' Parameter		ault 3 (If different from user i	
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	•		•
R011 'Area of contaminated zone (m**2)	3 5.580E+04 3 1.00	0E+04 ³	³ AREA
R011 3 Thickness of contaminated zone (m)	3 9.020E+00 3 2.00	0E+00 ³	3 THICKO
R011 3 Length parallel to aquifer flow (m)	3 4.360E+02 3 1.00	0E+02 ³	3 LCZPAQ
R011 'Basic radiation dose limit (mrem/yr)	3 2.500E+01 3 3.00	0E+01 3	³ BRDL
R011 ³ Time since placement of material (yr)	3 0.000E+00 3 0.00	DE+00 ³	³ TI
R011 ³ Times for calculations (yr)	3 1.000E+00 3 1.00	0E+00 ³	³ T(2)
R011 3 Times for calculations (yr)	3 2.000E+00 3 3.00	0E+00 ³	³ T(3)
R011 ³ Times for calculations (yr)	3 4.000E+00 3 1.00	0E+01 ³	'T(4)
R011 ³ Times for calculations (yr)	3 1.000E+01 3 3.00	0E+01 ³	³ T(5)
R011 ³ Times for calculations (yr)	3 4.000E+01 3 1.00		³ T(6)
R011 ³ Times for calculations (yr)	3 1.000E+02 3 3.00	0E+02 ³	°T(7)
R011 ³ Times for calculations (yr)	3 1.000E+03 3 1.00	OE+03 3	³ T(8)
R011 3 Times for calculations (yr)	³ not used ³ 0.00	0E+00 ³	³ T(9)
R011 3 Times for calculations (yr)	, not used 3 0.00	0E+00 ³	³ T(10)
3	3	3	3
R012 3 Initial principal radionuclide (pCi/g): H-3	3 2.300E-01 3 0.00	OE+00 3	³ S1(1)
R012 'Initial principal radionuclide (pCi/g): Pb-210	3 1.200E-01 3 0.00	OE+00 3	³ S1(2)
R012 3 Concentration in groundwater (pCi/L): H-3	3 not used 3 0.00	DE+00 3	³ W1(1)
R012 'Concentration in groundwater (pCi/L): Pb-210	3 not used 3 0.00	DE+00 3	³ W1(2)
3	3 3	3	3
R013 ³ Cover depth (m)	3 1.500E+00 3 0.00	0E+00 ³	3 COVERO
R013 ³ Density of cover material (g/cm**3)	3 1.500E+00 3 1.50	OE+00 3	3 DENSCV
R013 ³ Cover depth erosion rate (m/yr)	3 1.000E-03 3 1.00	OE-03 3	3 VCV
R013 ³ Density of contaminated zone (g/cm**3)	3 1.500E+00 3 1.50	OE+00 3	3 DENSCZ
R013 ³ Contaminated zone erosion rate (m/yr)	3 1.000E-03 3 1.00	DE-03 3	³ VCZ
R013 ³ Contaminated zone total porosity	3 4.000E-01 3 4.00	OE-01 3	³ TPCZ
R013 ' Contaminated zone field capacity	, 2.000E-01 ³ 2.00	DE-01 3	³ FCCZ
R013 3 Contaminated zone hydraulic conductivity (m/yr)	3 1.000E+01 3 1.00	OE+01 3	3 HCCZ
R013 3 Contaminated zone b parameter	3 5.300E+00 3 5.30	OE+00 3	3 BCZ
R013 3 Average annual wind speed (m/sec)	3 2.000E+00 3 2.00	DE+00 3	3 WIND
R013 ³ Humidity in air (g/m**3)	3 8.000E+00 3 8.00	DE+00 ³	3 HUMID
R013 ³ Evapotranspiration coefficient	3 5.000E-01 3 5.00	0E-01 ³	3 EVAPTR
R013 ³ Precipitation (m/yr)	3 1.290E+00 3 1.00	OE+00 3	3 PRECIP
R013 3 Irrigation (m/yr)	3 2.000E-01 3 2.00	DE-01 3	³ RI
R013 3 Irrigation mode	overhead overl	nead 3	3 IDITCH
R013 3 Runoff coefficient	3 2.000E-01 3 2.00	OE-01 3	3 RUNOFF
R013 ³ Watershed area for nearby stream or pond (m**2)	3 1.000E+06 3 1.00	DE+06 ³	3 WAREA
R013 ³ Accuracy for water/soil computations	3 1.000E-03 3 1.00	DE-03 ·	³ EPS
3	3	3	3
R014 ³ Density of saturated zone (g/cm**3)	3 1.500E+00 3 1.50	DE+00 3	3 DENSAQ
R014 ³ Saturated zone total porosity	3 4.000E-01 3 4.00	DE-01 3	3 TPSZ
R014 ³ Saturated zone effective porosity	3 2.000E-01 3 2.00	0E-01 3	3 EPSZ
R014 ³ Saturated zone field capacity	3 2.000E-01 3 2.000	DE-01 3	³ FCSZ
R014 ³ Saturated zone hydraulic conductivity (m/yr)	3 1.000E+02 3 1.00	DE+02 3	3 HCSZ
R014 3 Saturated zone hydraulic gradient	3 2.000E-02 3 2.00	DE-02 3	' HGWT
R014 3 Saturated zone b parameter	3 5.300E+00 3 5.30	DE+00 3	, BSZ
R014 3 Water table drop rate (m/yr)	3 1.000E-03 3 1.00	DE-03 3	3 VWT
${ m R014}^{-3}$ Well pump intake depth (m below water table)	3 1.000E+01 3 1.000	DE+01 ³	3 DWIBWT
R014 ³ Model: Nondispersion (ND) or Mass-Balance (MB)	3 ND 3 ND	3	3 MODEL
R014 3 Well pumping rate $(m**3/yr)$	3 2.500E+02 3 2.500	DE+02 ³	3 UW
3	3	3	3

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 4 Summary : RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

3	3	User	3		3 Used by RESRAD	3	Parameter
Menu ³ Parameter	3	Input	3	Default	<pre>3 (If different from user input)</pre>	3	Name
ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	ÁÄÄÄÅÅ	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÅÄ	Kaaaaaaa	ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	ÄÅ	АААААААААА
R015 ³ Number of unsaturated zone strata	3	2	3	1	3	3	NS
R015 ³ Unsat. zone 1, thickness (m)	3	9.140E-01	3	4.000E+00	3	3	H(1)
R015 3 Unsat. zone 1, soil density (g/cm**3)	3	1.500E+00	3	1.500E+00	3	3	DENSUZ(1)
R015 ' Unsat. zone 1, total porosity	3	4.000E-01	3	4.000E-01	·	3	TPUZ(1)
R015 'Unsat. zone 1, effective porosity	3	2.000E-01	3	2.000E-01	3	3	EPUZ(1)
R015 'Unsat. zone 1, field capacity	3	2.000E-01	3	2.000E-01	3	3	FCUZ(1)
R015 'Unsat. zone 1, soil-specific b parameter	3	5.300E+00	3	5.300E+00	3	3	BUZ(1)
R015 'Unsat. zone 1, hydraulic conductivity (m/yr)	3	3.160E-02	3	1.000E+01	·	3	HCUZ(1)
3	3		3		3	3	
R015 ³ Unsat. zone 2, thickness (m)	,	3.050E+00	3	0.000E+00	3	3	H(2)
R015 ³ Unsat. zone 2, soil density (g/cm**3)	3	1.500E+00	3	1.500E+00	·	3	DENSUZ(2)
R015 ³ Unsat. zone 2, total porosity	3	4.000E-01	3	4.000E-01	3	3	TPUZ(2)
R015 ' Unsat. zone 2, effective porosity	3	2.000E-01	3	2.000E-01	3	3	EPUZ(2)
R015 3 Unsat. zone 2, field capacity	3	2.000E-01	3	2.000E-01	3	3	FCUZ(2)
R015 ³ Unsat. zone 2, soil-specific b parameter	3	5.300E+00	3	5.300E+00	3	3	BUZ(2)
R015 ' Unsat. zone 2, hydraulic conductivity (m/yr)	3	1.000E+01	3	1.000E+01	·	3	HCUZ(2)
3	3		3		3	3	
R016 ³ Distribution coefficients for H-3	3		3		3	3	
R016 ³ Contaminated zone (cm**3/g)	3	0.000E+00	3	0.000E+00	,	3	DCNUCC(1)
R016 'Unsaturated zone 1 (cm**3/g)	3	0.000E+00	3	0.000E+00	,	3	DCNUCU(1,1)
R016 'Unsaturated zone 2 (cm**3/g)	3	0.000E+00	3	0.000E+00	,	3	DCNUCU(1,2)
R016 ³ Saturated zone (cm**3/g)	3	0.000E+00	3	0.000E+00	3	3	DCNUCS(1)
R016 3 Leach rate (/yr)	3	0.000E+00	3	0.000E+00	2.096E-01	3	ALEACH(1)
R016 'Solubility constant	3	0.000E+00	3	0.000E+00	not used	3	SOLUBK(1)
3	3		3		3	3	
R016 3 Distribution coefficients for Pb-210	3		3		3	3	
R016 ³ Contaminated zone (cm**3/g)	3	1.000E+02	3	1.000E+02	3	3	DCNUCC(2)
R016 3 Unsaturated zone 1 (cm**3/g)	3	1.000E+02	3	1.000E+02	3	3	DCNUCU(2,1)
R016 ³ Unsaturated zone 2 (cm**3/g)	3	1.000E+02	3	1.000E+02	3	3	DCNUCU(2,2)
R016 ³ Saturated zone (cm**3/g)	3	1.000E+02	3	1.000E+02	3	3	DCNUCS (2)
R016 ' Leach rate (/yr)		0.000E+00				3	ALEACH(2)
R016 'Solubility constant		0.000E+00		0.000E+00	not used		SOLUBK(2)
3	3		3		3	3	
R017 'Inhalation rate (m**3/yr)		8.400E+03				3	INHALR
R017 'Mass loading for inhalation $(g/m**3)$		1.000E-04					MLINH
R017 'Exposure duration		3.000E+01					ED
R017 3 Shielding factor, inhalation		4.000E-01					SHF3
R017 3 Shielding factor, external gamma		7.000E-01					SHF1
R017 'Fraction of time spent indoors		5.000E-01					FIND
R017 ³ Fraction of time spent outdoors (on site)		2.500E-01					FOTD
R017 ³ Shape factor flag, external gamma	3	1.000E+00	3	1.000E+00	>0 shows circular AREA.	3	FS

RESRAD, Version 6.3 T« Limit = 180 days

02/01/2007 14:43 Page File: LLNL GAC landfill.RAD Summary : RESRAD Default Parameters

Site-Specific Parameter Summary (continued)

Used by RESRAD User ³ Parameter Default ³ (If different from user input) ³ Menu 3 Parameter Input Name 3 3 R017 ³ Radii of shape factor array (used if FS = -1): 3 not used 3 5.000E+01 3 3 RAD_SHAPE(1) R∩17 3 Outer annular radius (m), ring 1: 3 RAD SHAPE (2) R017 3 Outer annular radius (m), ring 3 not used 3 7.071E+01 3 R017 3 Outer annular radius (m), ring 3 not used 3 0.000E+00 3 ___ 3 RAD SHAPE (3) R017 3 3 not used 3 0.000E+00 3 3 RAD SHAPE (4) Outer annular radius (m), ring 4: ³ not used 3 0.000E+00 3 ___ 3 RAD SHAPE (5) R017 3 Outer annular radius (m), ring R017 3 Outer annular radius (m), ring 6: , not used 3 0.000E+00 3 RAD SHAPE (6) R017 3 Outer annular radius (m), ring 7: not used 3 0.000E+00 3 RAD SHAPE (7) R017 3 Outer annular radius (m), ring , not used , 0.000E+00 , ____ 3 RAD SHAPE (8) 3 0.000E+00 3 3 RAD SHAPE (9) R017 3 Outer annular radius (m), ring 9: 3 not used R017 3 Outer annular radius (m), ring 10: 3 not used 3 0.000E+00 3 3 RAD SHAPE(10) R017 3 Outer annular radius (m), ring 11: 3 not used 3 0.000E+00 3 _ _ _ 3 RAD SHAPE (11) 3 0.000E+00 3 RAD SHAPE(12) R017 3 Outer annular radius (m), ring 12: 3 not used R017 ³ Fractions of annular areas within AREA: R017 3 Ring 1 3 not used 3 1.000E+00 3 ' FRACA(1) 3 2.732E-01 3 ___ * FRACA (2) R017 3 Rina not used 3 0.000E+00 3 3 FRACA(3) R017 3 not used Ring 3 ___ R017 ' Ring 4 ³ not used 3 0.000E+00 3 3 FRACA (4) R017 3 Ring ³ not used 3 0.000E+00 3 ---3 FRACA (5) R017 3 not used 3 0 000E+00 3 ___ 3 FRACA (6) Ring 6 R017 3 Ring ³ not used 3 0.000E+00 3 3 FRACA (7) R017 3 Ring not used '0.000E+00' ___ 3 FRACA(8) R∩17 3 3 not used 3 0.000E+00 3 ____ FRACA (9) Ring q 3 0.000E+00 3 R017 3 Ring 10 3 not used 3 FRACA(10) R017 3 Ring 11 3 not used 3 0.000E+00 3 ___ 3 FRACA(11) R017 3 Ring 12 3 not used 3 0.000E+00 3 3 FRACA(12) R018 ' Fruits, vegetables and grain consumption (kg/yr) ' 1.600E+02 ' 1.600E+02 ' 3 DIET(1) 1.400E+01 1.400E+01 3 3 DIET(2) R018 ' Leafy vegetable consumption (kg/yr) R018 3 Milk consumption (L/yr) , 9.200E+01 3 9.200E+01 3 ---3 DIET(3) 3 6.300E+01 3 6.300E+01 3 3 DIET (4) R018 3 Meat and poultry consumption (kg/yr) R018 ³ Fish consumption (kg/yr) 3 5.400E+00 3 5.400E+00 3 3 DIET(5) 9.000E-01 9.000E-01 3 R018 3 Other seafood consumption (kg/yr) ---3 DIET(6) 3 3.650E+01 3 3.650E+01 3 3 SOIL R018 'Soil ingestion rate (g/yr) 3 5.100E+02 3 5.100E+02 3 R018 3 Drinking water intake (L/yr) ___ 3 DWT 3 1.000E+00 3 1.000E+00 3 3 FDW R018 3 Contamination fraction of drinking water ---3 not used 3 1.000E+00 3 R018 3 Contamination fraction of household water 3 FHHW 3 1.000E+00 3 1.000E+00 3 _ _ _ R018 3 Contamination fraction of livestock water 3 FLW 1.000E+00 3 1.000E+00 3 ___ 3 FIRW R018 3 Contamination fraction of irrigation water R018 3 Contamination fraction of aquatic food 3 5.000E-01 3 5.000E-01 3 3 FR9 R018 3 Contamination fraction of plant food 3 5.000E-01 3-1 ---' FPLANT 3 1.000E+00 3-1 ___ 3 FMEAT R018 3 Contamination fraction of meat 3 1.000E+00 3-1 R018 3 Contamination fraction of milk 3 FMTLK 3 6.800E+01 3 6.800E+01 3 3 LFI5 R019 ' Livestock fodder intake for meat (kg/day) 3 5.500E+01 3 5.500E+01 3 R019 3 Livestock fodder intake for milk (kg/day) 3 LFT6 3 5.000E+01 3 5.000E+01 3 R019 3 Livestock water intake for meat (L/day) ___ 3 LWI5 3 1.600E+02 3 1.600E+02 3 3 LWI6 R019 3 Livestock water intake for milk (L/day) ---R019 3 Livestock soil intake (kg/day) 3 5.000E-01 3 5.000E-01 3 3 LSI R019 3 Mass loading for foliar deposition (g/m**3) 3 1.000E-04 3 1.000E-04 3 ___ 3 MLFD

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 6
Summary: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Site-Specific Parameter Summary (continued)

3	³ User	3	used by RESRAD	³ Parameter
Menu ³ Parameter	3 Input	3 Default	' (If different from user input)	3 Name
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAA	ÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ääääääääääääääääääääääääääääääääääääää	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
R019 ' Depth of soil mixing layer (m)	' 1.500E-01	3 1.500E-01	·	3 DM
R019 3 Depth of roots (m)	9.000E-01	9.000E-01	·	3 DROOT
${ m R019^{-3}}$ Drinking water fraction from ground water	3 1.000E+00	3 1.000E+00	·	' FGWDW
R019 3 Household water fraction from ground water	³ not used	3 1.000E+00	3 	' FGWHH
R019 3 Livestock water fraction from ground water	3 1.000E+00	3 1.000E+00	3	3 FGWLW
R019 3 Irrigation fraction from ground water	3 1.000E+00	1.000E+00	3	' FGWIR
1	3	3	3	3
R19B 3 Wet weight crop yield for Non-Leafy (kg/m**2)	3 7.000E-01	3 7.000E-01	3	³ YV(1)
R19B 'Wet weight crop yield for Leafy (kg/m**2)	1.500E+00	3 1.500E+00	3	³ YV (2)
R19B 3 Wet weight crop yield for Fodder $(kg/m^{**}2)$	' 1.100E+00	1.100E+00	3	3 YV (3)
R19B ³ Growing Season for Non-Leafy (years)	1.700E-01	3 1.700E-01	3	³ TE(1)
R19B ³ Growing Season for Leafy (years)	. 2.500E-01	3 2.500E-01	·	³ TE(2)
R19B ³ Growing Season for Fodder (years)	3 8.000E-02	3 8.000E-02	3	³ TE(3)
R19B ³ Translocation Factor for Non-Leafy	1.000E-01	1.000E-01	3	' TIV(1)
R19B ³ Translocation Factor for Leafy	1.000E+00	1.000E+00	3	3 TIV(2)
R19B 3 Translocation Factor for Fodder	3 1.000E+00	3 1.000E+00	3	3 TIV(3)
R19B ³ Dry Foliar Interception Fraction for Non-Leafy	3 2.500E-01	3 2.500E-01	·	3 RDRY(1)
R19B ³ Dry Foliar Interception Fraction for Leafy	3 2.500E-01	3 2.500E-01	3	3 RDRY(2)
R19B ³ Dry Foliar Interception Fraction for Fodder	3 2.500E-01	3 2.500E-01	3	3 RDRY(3)
R19B ' Wet Foliar Interception Fraction for Non-Leafy	3 2.500E-01	3 2.500E-01	3	3 RWET(1)
R19B ³ Wet Foliar Interception Fraction for Leafy	3 2.500E-01	3 2.500E-01	3	3 RWET(2)
R19B ³ Wet Foliar Interception Fraction for Fodder	3 2.500E-01	3 2.500E-01	3	3 RWET(3)
R19B ³ Weathering Removal Constant for Vegetation	3 2.000E+01	3 2.000E+01	3	3 WLAM
3	3	3	3	3
C14 ³ C-12 concentration in water (g/cm**3)	' not used	3 2.000E-05	3	' C12WTR
C14 3 C-12 concentration in contaminated soil (g/g)	3 not used	3 3.000E-02	3	3 C12CZ
C14 ' Fraction of vegetation carbon from soil	, not used	3 2.000E-02	3	, CSOIL
Cl4 ³ Fraction of vegetation carbon from air	' not used	9.800E-01	·	3 CAIR
C14 ³ C-14 evasion layer thickness in soil (m)	' not used	3.000E-01	3	3 DMC
C14 ' C-14 evasion flux rate from soil (1/sec)	' not used	7.000E-07	3	3 EVSN
C14 ' C-12 evasion flux rate from soil (1/sec)	³ not used	1.000E-10	3	3 REVSN
Cl4 ³ Fraction of grain in beef cattle feed	³ not used	9.000E-01	ı	3 AVFG4
Cl4 3 Fraction of grain in milk cow feed	, not used	3 2.000E-01	ı	3 AVFG5
Cl4 ³ DCF correction factor for gaseous forms of Cl4	' not used	3 0.000E+00	ı	3 CO2F
3		3	1	3
STOR ³ Storage times of contaminated foodstuffs (days)	: 3	3	1	3
STOR 3 Fruits, non-leafy vegetables, and grain	3 1.400E+01	3 1.400E+01	3	³ STOR_T(1)
STOR ' Leafy vegetables	3 1.000E+00	1.000E+00	3	3 STOR_T(2)
STOR 3 Milk	3 1.000E+00	3 1.000E+00	3	3 STOR T(3)
STOR 3 Meat and poultry	3 2.000E+01	3 2.000E+01	3	, STOR T(4)
STOR 'Fish	3 7.000E+00	³ 7.000E+00	3	3 STOR_T(5)
STOR ' Crustacea and mollusks	3 7.000E+00	3 7.000E+00	3	, STOR T(6)
STOR ' Well water	3 1.000E+00	3 1.000E+00	3	' STOR T(7)
STOR 'Surface water	3 1.000E+00	3 1.000E+00	3	, STOR_T(8)
STOR 3 Livestock fodder	3 4.500E+01	3 4.500E+01	3	- 'STOR_T(9)
3	3	3	3	3
R021 ³ Thickness of building foundation (m)	³ not used	3 1.500E-01	3	' FLOOR1
R021 ³ Bulk density of building foundation (g/cm**3)	³ not used	3 2.400E+00	3	, DENSFL
R021 ³ Total porosity of the cover material	³ not used	3 4.000E-01	3	, TPCV
RO21 ³ Total porosity of the building foundation	³ not used	3 1.000E-01	3	3 TPFL
RO21 ³ Volumetric water content of the cover material	3 not used			³ PH2OCV

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 7
Summary: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Site-Specific Parameter Summary (continued)

3	3 User	3	3 Used by RESRAD	3 Parameter								
Menu ³ Parameter	3 Input	3 Default	³ (If different from use:	r input) ³ Name								
<i></i> 1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	äääääääääääää	Kaaaaaaaaaaaaaaaa	A a a a a a a a a a a a a a a a a a a a	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA								
R021 ³ Volumetric water content of the foundation	³ not use	d 3 3.000E-02	2 3	3 PH2OFL								
R021 3 Diffusion coefficient for radon gas (m/sec):	3	3	3	3								
R021 3 in cover material	¹ not use	d 3 2.000E-0	6 3	, DIECA								
R021 3 in foundation material	' not use	d 3 3.000E-0	7 3	, DIELF								
R021 3 in contaminated zone soil	³ not use	d 3 2.000E-0	6 3	'DIFCZ								
R021 3 Radon vertical dimension of mixing (m)	³ not use	d 3 2.000E+00) 3	3 HMIX								
R021 ³ Average building air exchange rate (1/hr)	³ not use	d 3 5.000E-01	1 3	, REXG								
R021 ³ Height of the building (room) (m)	³ not use	d 3 2.500E+00) 3	3 HRM								
R021 ³ Building interior area factor	³ not use	d 3 0.000E+00) 3	, FAI								
R021 ³ Building depth below ground surface (m)	³ not use	d 3-1.000E+00) 3	3 DMFL								
R021 ³ Emanating power of Rn-222 gas	³ not use	d 3 2.500E-01	1 3	3 EMANA(1)								
R021 ' Emanating power of Rn-220 gas	³ not use	d 3 1.500E-01	1 3	' EMANA(2)								
3	3	3	3	3								
TITL ' Number of graphical time points	3 32	3	3	' NPTS								
TITL ' Maximum number of integration points for dose	3 17	,	3	3 LYMAX								
TITL 3 Maximum number of integration points for risk	3 257	3	3	3 KYMAX								
111111111111111111111111111111111111												

Summary of Pathway Selections

Pathway	3	User	Selection
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄ	ÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 8 Summary : RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Area: 55798.00 square meters H-3 2.300E-01
Thickness: 9.02 meters Pb-210 1.200E-01

Cover Depth: 1.50 meters

Total Dose TDOSE(t), mrem/yr

Basic Radiation Dose Limit = 2.500E+01 mrem/yr

t (years): 0.000E+00 1.000E+00 2.000E+00 4.000E+00 1.000E+01 4.000E+01 1.000E+02 1.000E+03

TDOSE(t): 5.576E-15 4.583E-03 1.413E-02 2.355E-02 4.934E-03 1.707E-06 2.052E-13 5.639E-14

M(t): 2.230E-16 1.833E-04 5.651E-04 9.419E-04 1.974E-04 6.828E-08 8.208E-15 2.256E-15

Maximum TDOSE(t): 2.383E-02 mrem/yr at t = 3.775 ñ 0.008 years

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 3.775E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Ground		Inhalation		Radon		Pla	nt	Mea	t	Mil	k	Soi	.1
Radio-	KAAAAAAAAAAAAA		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAAAA A	
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fra
Nuclide														
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0
Pb-210	5.210E-15	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	İÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍ
Total	5.210E-15	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 3.775E+00 years

	Water	Fi	Fish		Radon		nt	Mea	t	Mil	k	All Pat	hway
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	aaaaaaa	<i></i> AAAAAAAAAAAAA		AAAAAAAAAAAAAA		AAAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAAAA	
Nuclide	e mrem/yr frac	. mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fra
Nuclide	è												
ÄÄÄÄÄÄÄ	AAAA AAAAAAA	AAAAAAA	Ä ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄ
H-3	1.862E-02 0.78	3 6.413E-0	6 0.0003	0.000E+00	0.0000	1.796E-03	0.0754	8.874E-04	0.0372	2.521E-03	0.1058	2.383E-02	1.0
Pb-210	0.000E+00 0.00	0 0.000E+0	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	5.210E-15	0.0
ÍÍÍÍÍÍ	i iiiiiiiii iiii	í íííííííí	i iiiiii	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍ
Total	1.862E-02 0.78	3 6.413E-0	6 0.0003	0.000E+00	0.0000	1.796E-03	0.0754	8.874E-04	0.0372	2.521E-03	0.1058	2.383E-02	1.0

^{*}Sum of all water independent and dependent pathways.

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 9
Summary: RESRAD Default Parameters File: LLNL GAC landfill.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

		Ground		Inhalation		Radon		Pla	nt	Mea	t	Mill	ς	Soi	1
Ra	dio-	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄ
Nu	clide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fra
ÄÄ	ÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄ
H-	3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0
Pb	-210	5.576E-15	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0
ÍÍ	ÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	İÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ifiiííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍ
То	tal	5.576E-15	1.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

	Water	Fish	Radon	Plant	Meat	Milk	All Pathway
Radio-	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fra
ÄÄÄÄÄÄÄ	AAAAAA AAAAAAA	AAAAAAA AAAAAA	AAAAAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAA AAAAAA	AAAAAAAA AAA
H-3	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0
Pb-210	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.576E-15 1.0
ÍÍÍÍÍÍ	í íííííííííííííííííííííííííííííííííííí	iíiiiiiii iiiiii	iiiiiiiii iiiiii	íííííííííí íííííí	íííííííííííííííííííííííííííííííííííííí	ÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ	íííííííííí ííí
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.576E-15 1.0

^{*}Sum of all water independent and dependent pathways.

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 10 Summary : RESRAD Default Parameters File: LLNL_GAC landfill.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAA	. AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	e mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fra
AAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄ ÄÄÄ
H-3	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0
Pb-210	5.477E-15 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0
ÍÍÍÍÍÍ:	í íííííííííí íííííí	ÍÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ	íííííííííííííííííííííííííííííííííííííí	íííííííííííííííííííííííííííííííííííííí	iiiiiiii iiiiii	íííííííííí ííííííí	íííííííííííííííííííííííííííííííííííííí
Total	5.477E-15 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years

	Water	Fish	Radon	Plant	Meat	Milk	All Pathway
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	e mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fra
ÄÄÄÄÄÄÄ	AAAAAA AAAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAAAA AAA
H-3	3.634E-03 0.7929	1.208E-06 0.0003	0.000E+00 0.0000	3.251E-04 0.0709	1.432E-04 0.0312	4.795E-04 0.1046	4.583E-03 1.0
Pb-210	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.477E-15 0.0
ÍÍÍÍÍÍÍ	iiiiiii iiiiiii	iiiiiiii iiiiii	iiiiiii iiiiiiii	íííííííííííííííííííííííííííííííííííííí	iiiiiii iiiiiiii	iiiiiiiii iiiiiii	íííííííííííííííííííííííííííííííííííííí
Total	3.634E-03 0.7929	1.208E-06 0.0003	0.000E+00 0.0000	3.251E-04 0.0709	1.432E-04 0.0312	4.795E-04 0.1046	4.583E-03 1.0

^{*}Sum of all water independent and dependent pathways.

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 11 Summary : RESRAD Default Parameters File: LLNL GAC landfill.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 2.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fra
ÄÄÄÄÄÄÄ	АААААА АААААА	AAAAAAAAAAAAA	даааааааа аааааа	АААААААА АААААА	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄ ÄÄÄ
H-3	0.000E+00 0.0000	0.000E+00 0.0					
Pb-210	5.379E-15 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0
ÍÍÍÍÍÍÍ	íííííííííí íííííí	iiiiiiiii iiiiii	ííííííííí fíííííí	ffffffff ffffff	iiiiiiiii iiiiii	iiiiiiiii iiiii	ííííííííí ÍÍí
Total	5.379E-15 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 2.000E+00 years

	Water	Fish	Radon	Plant	Meat	Milk	All Pathway
Radi	.о- ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nucl	ide mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fra
ÄÄÄÄ	AAAAAA AAAAAAA AAA	AAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAA AAAAAAA
H-3	1.108E-02 0.7845	3.781E-06 0.0003	0.000E+00 0.0000	1.048E-03 0.0742	5.025E-04 0.0356	1.490E-03 0.1055	1.413E-02 1.0
Pb-2	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	5.379E-15 0.0
ÍÍÍÍ	tíí íiíííííííí tííííí	íííííííííííííííííííííííííííííííííííííí	íííííííííííííííííííííííííííííííííííííí	iiiiiiiii iiiii	iiiiiiii iiiiii	ííiiííííí ííííííí	iíiíiíiííí ííí
Tota	1.108E-02 0.7845	3.781E-06 0.0003	0.000E+00 0.0000	1.048E-03 0.0742	5.025E-04 0.0356	1.490E-03 0.1055	1.413E-02 1.0

 $[\]mbox{\tt *Sum}$ of all water independent and dependent pathways.

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 12 Summary: RESRAD Default Parameters File: LLNL GAC landfill.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 4.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Ground		Inhalation		Radon		Pla	nt	Mea	t	Mil	k	Soi	1
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAääää	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄ
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fra
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0
Pb-210	5.189E-15	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍ
Total	5.189E-15	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 4.000E+00 years

		Wat	er	Fis	h	Rad	on	Pla	nt	Mea	t	Mil	ς	All Pat	hway
Radi	io-	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄ
Nuc	lide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fra
ÄÄÄÄ	ÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄ
H-3		1.839E-02	0.7809	6.339E-06	0.0003	0.000E+00	0.0000	1.777E-03	0.0755	8.830E-04	0.0375	2.493E-03	0.1059	2.355E-02	1.0
Pb-2	210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	5.189E-15	0.0
ÍÍÍ	ÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍ	ÍÍÍ
Tota	al	1.839E-02	0.7809	6.339E-06	0.0003	0.000E+00	0.0000	1.777E-03	0.0755	8.830E-04	0.0375	2 493E-03	0.1059	2.355E-02	1.0

 $[\]ensuremath{^{\star}} \mbox{Sum}$ of all water independent and dependent pathways.

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 13 Summary : RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

		Grou	nd	Inhala	tion	Rad	on	Pla	nt	Mea	t	Mil	k	Soi	1
Ra	dio-	AAAAAAAAA	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAAA	AAAAAA	AAAAAAAAA.	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄ
Nu	clide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fra
ÄÄ	ÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄ
Н-	3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0
Pb.	-210	4.657E-15	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0
ÍÍ	ÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍ
To	tal	4.657E-15	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) $As \ \, \text{mrem/yr and Fraction of Total Dose At t = 1.000E+01 years}$

	Water	Fish	Radon	Plant	Meat	Milk	All Pathway
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	mrem/yr fract.	mrem/yr fra					
ÄÄÄÄÄÄÄÄ	AAAAAAAAAAA	AAAAAA AAAAAA	AAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAA	АААААААА АААААА	ÄÄÄÄÄÄÄÄÄ ÄÄÄ
H-3	3.848E-03 0.7798	1.331E-06 0.0003	0.000E+00 0.0000	3.744E-04 0.0759	1.880E-04 0.0381	5.229E-04 0.1060	4.934E-03 1.0
Pb-210	0.000E+00 0.0000	4.657E-15 0.0					
ÍÍÍÍÍÍÍ	iiiiiii iiiiii	ÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ	ííííííííí ííííííí	ÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ	iiiiiiii iiiii	íííííííííííííííííííííííííííííííííííííí	ÍÍÍÍÍÍÍÍÍ ÍÍÍ
Total	3.848E-03 0.7798	1.331E-06 0.0003	0.000E+00 0.0000	3.744E-04 0.0759	1.880E-04 0.0381	5.229E-04 0.1060	4.934E-03 1.0

^{*}Sum of all water independent and dependent pathways.

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 14 Summary : RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 4.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fra
ÄÄÄÄÄÄÄ	AAAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
H-3	0.000E+00 0.0000	0.000E+00 0.0					
Pb-210	2.713E-15 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0
íÍÍÍÍÍ	títítítíti títítí	iíiíiíií iiiiíí	íiiíiíiíi íiíííí	ÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ	íííííííííííííííííííííííííííííííííííííí	iiiiiiii iiiiii	íiííiííííí íií
Total	2.713E-15 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 4.000E+01 years

	Water	Fish	Radon	Plant	Meat	Milk	All Pathway
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fra
ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄ ÄÄÄ
H-3	1.331E-06 0.7798	4.603E-10 0.0003	0.000E+00 0.0000	1.295E-07 0.0759	6.503E-08 0.0381	1.809E-07 0.1060	1.707E-06 1.0
Pb-210	0.000E+00 0.0000	2.713E-15 0.0					
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ	íííííííííííííííííííííííííííííííííííííí	íííííííííííííííííííííííííííííííííííííí	íííííííííí íííííí	ÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ	ííííííííí íííííí	íííííííííí ííí
Total	1.331E-06 0.7798	4.603E-10 0.0003	0.000E+00 0.0000	1.295E-07 0.0759	6.503E-08 0.0381	1.809E-07 0.1060	1.707E-06 1.0

^{*}Sum of all water independent and dependent pathways.

RESRAD, Version 6.3 Tw Limit = 180 days 02/01/2007 14:43 Page 15
Summary: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.000E+02 years

Water Independent Pathways (Inhalation excludes radon)

	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	e mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fra
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ AAAAÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
H-3	0.000E+00 0.0000	0.000E+00 0.0					
Pb-210	9.217E-16 0.0045	0.000E+00 0.0000	0.000E+00 0.0				
ÍÍÍÍÍÍ	í íííííííííí íííííí	iiiiiiii iiiiii	íííííííííí íííííí	íííííííííííííííííííííííííííííííííííííí	ffiffffff ffffff	íííííííííí ííííííí	íííííííííííííííííííííííííííííííííííííí
Total	9.217E-16 0.0045	0.000E+00 0.0000	0.000E+00 0.0				

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.000E+02 years

	Water	Fish	Radon	Plant	Meat	Milk	All Pathway
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fra
ÄÄÄÄÄÄÄ	AAAAAA AAAAAAA	AAAAAAA AAAAAA	АААААААА АААААА	AAAAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
H-3	1.593E-13 0.7763	5.509E-17 0.0003	0.000E+00 0.0000	1.550E-14 0.0755	7.782E-15 0.0379	2.165E-14 0.1055	2.043E-13 0.9
Pb-210	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	9.217E-16 0.0
ÍÍÍÍÍÍÍ	iííííííííííííííííííííííííííííííííííííí	iiiiiiii iiiiii	íííííííííí ííííííí	iiiiiiii iiiiii	íííííííííííííííííííííííííííííííííííííí	íííííííííí íííííí	ÍÍÍÍÍÍÍÍÍ ÍÍÍ
Total	1.593E-13 0.7763	5.509E-17 0.0003	0.000E+00 0.0000	1.550E-14 0.0755	7.782E-15 0.0379	2.165E-14 0.1055	2.052E-13 1.0

 $^{{}^\}star \text{Sum}$ of all water independent and dependent pathways.

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 16
Summary: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.000E+03 years

Water Independent Pathways (Inhalation excludes radon)

	Ground	i	Inhala	tion	Rade	on	Pla	nt	Mea	t	Mil!	<	Soil	1
Radio-	ÄÄÄÄÄÄÄÄÄÄÄ	AAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄÄ	AKKKKKK	AAAAAAAAA	AAAAAA	AAAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄ
Nuclide	mrem/yr f	ract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fra
ÄÄÄÄÄÄÄ	AAAAAAAAA A	ÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	АААААААА	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄ
H-3	0.000E+00 0	0.000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0
Pb-210	2.913E-22 0	0.000	0.000E+00	0.0000	0.000E+00	0.0000	6.694E-15	0.1187	2.636E-16	0.0047	1.168E-16	0.0021	0.000E+00	0.0
ÍÍÍÍÍÍÍ	ííííííííí í	ÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍ	ÍÍÍ
Total	2.913E-22 0	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	6.694E-15	0.1187	2.636E-16	0.0047	1.168E-16	0.0021	0.000E+00	0.0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As mrem/yr and Fraction of Total Dose At t = 1.000E+03 years

	Water	Fish	Radon	Plant	Meat	Milk	All Pathway
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
Nuclide	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fra
ÄÄÄÄÄÄÄ	AAAAAAAAAAAA	AAAAAAAA AAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAA AAAAAA	AAAAAAAA AAAAAA	AAAAAAAA AAA
H-3	0.000E+00 0.0000	0.000E+00 0.0					
Pb-210	4.104E-14 0.7277	3.839E-15 0.0681	0.000E+00 0.0000	3.163E-15 0.0561	7.029E-16 0.0125	5.769E-16 0.0102	5.639E-14 1.0
ÍÍÍÍÍÍÍ	títítítítí títítí	íííííííííííííííííííííííííííííííííííííí	íííííííííí íiíííí	ííííííííí íííííí	ííííííííí íííííí	íííííííííí ííííííí	íííííííííí ííí
Total	4.104E-14 0.7277	3.839E-15 0.0681	0.000E+00 0.0000	3.163E-15 0.0561	7.029E-16 0.0125	5.769E-16 0.0102	5.639E-14 1.0

^{*}Sum of all water independent and dependent pathways.

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 17 Summary : RESRAD Default Parameters File: LLNL GAC landfill.RAD

Dose/Source Ratios Summed Over All Pathways Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Thread	DSR(i.t) At Time in Years	(mrem/vr)/(pCi/g)

Single Radionuclide Soil Guidelines G(i,t) in pCi/g Basic Radiation Dose Limit = 2.500E+01 mrem/yr

Nuclide

Summed Dose/Source Ratios DSR(i,t) in (mrem/yr)/(pCi/g) and Single Radionuclide Soil Guidelines G(i,t) in pCi/g at tmin = time of minimum single radionuclide soil guideline and at tmax = time of maximum total dose = 3.775 \hat{n} 0.008 years

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 18 Summary : RESRAD Default Parameters File: LLNL GAC landfill.RAD

Individual Nuclide Dose Summed Over All Pathways
Parent Nuclide and Branch Fraction Indicated

Nuclide Parent THF(i) DOSE(j,t), mrem/yr

Individual Nuclide Soil Concentration

Parent Nuclide and Branch Fraction Indicated

Nuclide Parent THF(i) S(j,t), pCi/g

RESCALC.EXE execution time = 0.96 seconds

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 1
Intrisk: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Table of Contents

Part III: Intake Quantities and Health Risk Factors

Cancer Risk Slope Factors	2
Risk Slope and ETFG for the Ground Pathway	3
Amount of Intake Quantities and Excess Cancer Risks	
Time= 0.000E+00	4
Time= 1.000E+00	6
Time= 2.000E+00	8
Time= 4.000E+00	10
Time= 1.000E+01	12
Time= 4.000E+01	14
Time= 1.000E+02	16
Time= 1.000E+03	18

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 2

Intrisk: RESRAD Default Parameters File: LLNL GAC landfill.RAD

Cancer Risk Slope Factors Summary Table Risk Library: FGR 13 Morbidity

	3	3	Current	3	Base	3	Parame	eter
Menu	Parameter	3	Value	3	Case*	,	Name	e
ÄÄÄÄÄÄ	iaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	ÁÅ	ÄÄÄÄÄÄÄÄÄÄ	ÄÅ	AAAAAAAAAA	ÁÅ	KAKKKK	ÄÄÄÄÄÄÄ
Sf-1	's Ground external radiation slope factors, 1/yr per (pCi/g):	3		3		•		
Sf-1	» H-3	3	0.00E+00	3	0.00E+00	3	SLPF(1,1)
Sf-1	³ Pb-210+D	3	4.21E-09	3	1.41E-09	3	SLPF(2,1)
	3	3		3		3		
Sf-2	' Inhalation, slope factors, 1/(pCi):	3		3		3		
Sf-2	• н-3	3	8.51E-13	3	8.51E-13	3	SLPF(1,2)
Sf-2	³ Pb-210+D	3	3.08E-08	3	1.58E-08	3	SLPF(2,2)
	3	3		3		3		
Sf-3	<pre>3 Food ingestion, slope factors, 1/(pC1):</pre>	3		3		3		
Sf-3	³ H-3	3	1.44E-13	3	1.44E-13	3	SLPF(1,3)
Sf-3	³ Pb-210+D	3	3.44E-09	3	1.18E-09	3	SLPF(2,3)
	3	3		3		3		
Sf-3	' Water ingestion, slope factors, 1/(pCi):	3		3		3		
Sf-3	• н-3	3	1.12E-13	3	1.12E-13	3	SLPF(1,4)
Sf-3	, b-210+D	3	2.66E-09	,	8.81E-10	3	SLPF(2,4)
		3		,		3		
sf-3	' Soil ingestion, slope factors, 1/(pCi):	3		3		3		
Sf-3	³ H-3	3	1.44E-13	3	1.44E-13	3	SLPF(1,5)
Sf-3	³ Pb-210+D	3	3.44E-09	3	1.18E-09	3	SLPF(2,5)
	,	3		3		3		

^{*}Base Case means Default.Lib w/o Associate Nuclide contributions.

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 3

Intrisk: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Risk Slope and Environmental Transport Factors for the Ground Pathway

 RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 4
Intrisk: RESRAD Default Parameters File: LLNL GAC landfill.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As pCi/yr at t = 0.000E+00 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways Radio-Nuclide Inhalation Plant Meat Milk Soil Water Fish Plant Meat Milk Ingestion* $0.000E+00 \quad 0.000E+00 \quad 0.00$ H-30.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 Pb-210 * Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil and water-dependent water, fish, plant, meat, milk pathways

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=0.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhalat	cion	Plan	nt	Meat	:	Mill	k	Soil	1
Radio-	ÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAA	KÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAA	XXXXXX	AAAAAAAA	KAKKKK	XXXXXXXXX	ÄÄÄÄÄÄ
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
AAAAAA	АААААААА	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	АХХХХ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAA
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	9.849E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	İÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	9.849E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=0.000E+00 years

	Wate	r	Fish	n	Plan	nt	Meat	t	Mil	ς.	All Path	nways**
Radio-	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAA	AAAAAA	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	аааааа	ÄÄÄÄÄÄÄÄÄ	XXXXX	ÄÄÄÄÄÄÄÄÄ	AAAAA	АХАХАХАХ	XXXXX	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	1.942E-07	0.7350	8.605E-11	0.0003	2.412E-08	0.0913	1.198E-08	0.0453	3.384E-08	0.1281	2.642E-07	1.0000
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	9.849E-20	0.0000
ÍÍÍÍÍÍÍ	íiíiííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	iiiiiiiii	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	1.942E-07	0.7350	8.605E-11	0.0003	2.412E-08	0.0913	1.198E-08	0.0453	3.384E-08	0.1281	2.642E-07	1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 5
Intrisk: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=0.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhala	tion	Rado	on	Plant	ŧ.	Meat	t	Mill	<	Soil	1
Radio-	ÄÄÄÄÄÄÄÄÄ	ХХХХХХХ	XXXXXXXXX	AAAAAAA	XXXXXXXXXXX	ÄÄÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	KAKKKKKKK	ÄÄÄÄÄÄÄ
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	9.849E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
iíííííí	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	9.849E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=0.000E+00 years

	Wate	r	Fis	h	Rad	on	Plan	t	Mea	t	Mill	K	All path	hways
Radio-	XXXXXXXXX.	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	KKKKKK.	ÄÄÄÄÄÄÄÄÄ	KÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AKKKKA	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	KAKKKKKKK	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	XXXXXX
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAA	AAAAAAAAA	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	1.942E-07	0.7350	8.605E-11	0.0003	0.000E+00	0.0000	2.412E-08	0.0913	1.198E-08	0.0453	3.384E-08	0.1281	2.642E-07	1.0000
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	9.849E-20	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	İİİİİİİİİ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	1.942E-07	0.7350	8.605E-11	0.0003	0.000E+00	0.0000	2.412E-08	0.0913	1.198E-08	0.0453	3.384E-08	0.1281	2.642E-07	1.0000

^{***}CNRSI(i,p,t) includes contribution from decay daughter radionuclides

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 6
Intrisk: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As pCi/yr at t = 1.000E+00 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways

Radio-Nuclide Inhalation Plant Meat Milk Soil Water Fish Plant Meat Milk Ingestion* 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 Pb-210 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 * Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil

and water-dependent water, fish, plant, meat, milk pathways

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t = 1.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

		Groun	ıd	Inhalat	ion	Plan	ıt.	Meat	:	Mill		Soil	L
Radi	.o- ÄÄÄ	AAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAAA	KAAAAA	AAAAAAAAA	ÄÄÄÄÄÄ	AAAAAAAAA	KAAAAA
Nucl	ide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄ	AAA AAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	AAAAAA	AAAAAAAA	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAA	AAAAAA
H-3	0.0	00E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-2	10 9.6	73E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍ	ííí ííí	ÍÍÍÍÍÍ	İÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Tota	1 9.6	73E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=1.000E+00 years

	Wate	r	Fish	מ	Plan	nt	Mean	5	Mill	k	All Path	nways**
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
AAAAAAA	AAAAAAAÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	1.954E-07	0.7353	8.650E-11	0.0003	2.422E-08	0.0912	1.200E-08	0.0452	3.402E-08	0.1281	2.657E-07	1.0000
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	9.673E-20	0.0000
ÍÍÍÍÍÍÍ	iiiiiiiii	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	İİİİİİİİİ	ÍÍÍÍÍÍ	İİİİİİİİİ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	1.954E-07	0.7353	8.650E-11	0.0003	2.422E-08	0.0912	1.200E-08	0.0452	3.402E-08	0.1281	2.657E-07	1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 7
Intrisk : RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhala	tion	Rad	on	Plan	t	Meat	t	Mil	k	Soi	l
Radio-	ÄÄÄÄÄÄÄÄÄÄ	АХАХАХ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄ
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	9.673E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	9.673E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=1.000E+00 years

Water Dependent Pathways

	Wate	r	Fis	h	Rad	on	Plan	t	Mea	t	Mill	ς.	All pat	hways
Radio	- ХАХАХАХА	AAAAAA.	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAAAA	AAAAAA	ÄÄÄÄÄÄÄÄÄ	AKAKAKA
Nucli	de risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄ	AAAAAAA AA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAAA	ÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
н-3	1.954E-07	0.7353	8.650E-11	0.0003	0.000E+00	0.0000	2.422E-08	0.0912	1.200E-08	0.0452	3.402E-08	0.1281	2.657E-07	1.0000
Pb-23	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	9.673E-20	0.0000
ÍÍÍÍ	íí ííííííííí	ÍÍÍÍÍÍ	íÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	İÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Tota]	1.954E-07	0.7353	8.650E-11	0.0003	0.000E+00	0.0000	2.422E-08	0.0912	1.200E-08	0.0452	3.402E-08	0.1281	2.657E-07	1.0000

 $\verb|***CNRSI(i,p,t)| includes contribution from decay daughter radionuclides| \\$

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 8
Intrisk: RESRAD Default Parameters File: LLNL_GAC landfill.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As pCi/yr at t = 2.000E+00 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways

Radio-Milk Fish Nuclide Inhalation Plant Meat Soil Water Plant Meat Milk Ingestion* 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.211E+05 4.103E+01 1.129E+04 5.288E+03 1.620E+04 1.539E+05 Pb-210 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil and water-dependent water, fish, plant, meat, milk pathways

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t = 2.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhalat	ion	Plan	nt	Meat	:	Mil	ζ	Soil	L
Radio-	AÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAAA	KKKKK	KAKAKAKA	AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄ	AAAAA
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	AAAAA
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	9.501E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	İİİİİİ	fifffffff	İİİİİİ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	İİİİİİ	iiiiiiiii	ÍÍÍÍÍÍ
Total	9.501E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=2.000E+00 years

Wa	er	Fis	h	Plan	nt	Meat		Mill	ς	All Path	nways**
Radio- ÄÄÄÄÄÄÄÄ	KAAAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	XAAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ
Nuclide risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
AAAAAA AAAAAA	AAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3 1.896E-	0.7350	8.401E-11	0.0003	2.354E-08	0.0913	1.169E-08	0.0453	3.304E-08	0.1281	2.580E-07	1.0000
Pb-210 0.000E+	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	9.501E-20	0.0000
iiiiiii iiiiiii	íi iííííí	iíiíííííí	ÍÍÍÍÍÍ	ííííííííí	ÍÍÍÍÍÍ	İİİİİİİİİ	ÍÍÍÍÍÍ	ííííííííí	ÍÍÍÍÍÍ	iiiiiiiii	ÍÍÍÍÍÍ
Total 1.896E-0	0.7350	8.401E-11	0.0003	2.354E-08	0.0913	1.169E-08	0.0453	3.304E-08	0.1281	2.580E-07	1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 9
Intrisk: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=2.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhala	tion	Rado	on	Plan	t	Mea	t	Mill	k	Soi	1
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAA	AAAAAA	AAAAAAAAA	AAAAAA	ÄÄÄÄÄÄÄÄÄ	AAAAAAA	ÄÄÄÄÄÄÄÄÄÄ	KKKKKK	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	9.501E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	9.501E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=2.000E+00 years

	Wate	r	Fis	h	Rad	on	Plan	t	Mea	t	Mil	k	All pat	hways
Radio-	AAAAAAAA	KKKKKK.	ÄÄÄÄÄÄÄÄÄ	XXXXXXX	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AKKKKK	AAAAAAAA	KKKKKK	AAAAAAAA	ÄÄÄÄÄÄÄ	AAAAAAAA	AAAAAA
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAAA	AAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	1.896E-07	0.7350	8.401E-11	0.0003	0.000E+00	0.0000	2.354E-08	0.0913	1.169E-08	0.0453	3.304E-08	0.1281	2.580E-07	1.0000
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	9.501E-20	0.0000
ÍÍÍÍÍÍ	íííííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	1.896E-07	0.7350	8.401E-11	0.0003	0.000E+00	0.0000	2.354E-08	0.0913	1.169E-08	0.0453	3.304E-08	0.1281	2.580E-07	1.0000

^{***}CNRSI(i,p,t) includes contribution from decay daughter radionuclides

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 10

Intrisk: RESRAD Default Parameters File: LLNL GAC landfill.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As pCi/yr at t=4.000E+00 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways

Radio-Nuclide Inhalation Plant Milk Soil Fish Plant Meat Water Meat Milk Ingestion* 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.882E+05 9.891E+01 2.760E+04 1.352E+04 3.893E+04 3.684E+05 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 Pb-210 * Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil

* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil and water-dependent water, fish, plant, meat, milk pathways

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t = 4.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhala	tion	Pla	nt	Meat	t	Mil:	k	Soil	L
Radio-	AAAAAAAA	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAA	ÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAAA	AAAAAA	AAAAAAAA	AAAAAA	XXXXXXXXXXX	AAAAAA
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
AAAAAA	AAAAAAAAA	AAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	9.165E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	íííííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	iiiiiiiii	İİİİİİ
Total	9.165E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=4.000E+00 years

	Wate	r	Fish	ר	Plan	nt	Meat	t	Mill	ς.	All Path	nways**
Radio-	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ААААААААА	AAAAA	ÄÄÄÄÄÄÄÄÄ	XXXXX	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAA	XXXXXXXX	ÄÄÄÄÄÄ
H-3	1.359E-07	0.7345	6.029E-11	0.0003	1.692E-08	0.0914	8.436E-09	0.0456	2.370E-08	0.1281	1.850E-07	1.0000
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	9.165E-20	0.0000
İÍÍÍÍÍÍ	ííÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	íííííí	iiiiiiiii	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	1.359E-07	0.7345	6.029E-11	0.0003	1.692E-08	0.0914	8.436E-09	0.0456	2.370E-08	0.1281	1.850E-07	1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 11

Intrisk: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=4.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhala	tion	Rad	on	Plan	t	Mea	t	Mil	k	Soi	1
Radio-	ÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAAA	AAAAAA	AAAAAAAAAA	ÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAA
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	9.165E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	íííííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	9.165E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=4.000E+00 years

	Wate	r	Fis	h	Rade	on	Plan	t	Mea	t	Mil	k	All pat	hways
Radio-	AAAAAAAA	AÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	XXXXXXXXX	ÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄ	XXXXXXXXX	ÄÄÄÄÄÄÄ
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAA	ÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	1.359E-07	0.7345	6.029E-11	0.0003	0.000E+00	0.0000	1.692E-08	0.0914	8.436E-09	0.0456	2.370E-08	0.1281	1.850E-07	1.0000
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	9.165E-20	0.0000
İİİİİİİ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	1.359E-07	0.7345	6.029E-11	0.0003	0.000E+00	0.0000	1.692E-08	0.0914	8.436E-09	0.0456	2.370E-08	0.1281	1.850E-07	1.0000

^{***}CNRSI(i,p,t) includes contribution from decay daughter radionuclides

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 12
Intrisk: RESRAD Default Parameters File: LLNL GAC landfill.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 1.000E+01 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways

Radio-Nuclide Inhalation Plant Most Milk Soil Fish Water Plant Meat. Milk Ingestion* 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.846E+04 2.368E+01 6.661E+03 3.345E+03 9.304E+03 8.779E+04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 Pb-210

* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil and water-dependent water, fish, plant, meat, milk pathways

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=1.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhala	tion	Plan	nt	Meat	t	Mil	k	Soil	L
Radio-	ÄÄÄÄÄÄÄÄÄ	АХХХХХ	AAAAAAAA	AAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄ	AAAAAAAA	AAAAAA	AAAAAAAA	ÄÄÄÄÄÄ	KAKAKAKK	AAAAAA
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AKKAKA	AKAKKKK	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	8.226E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	İİİİİİİİİ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	İÍÍÍÍÍ	iiiiiiiii	ÍÍÍÍÍÍ
Total	8.226E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=1.000E+01 years

	Wate	r	Fish	ı	Plan	ıt	Meat	:	Mil)	ς	All Path	nways**
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAA	AAAAAAAA	AAAAAA	ÄÄÄÄÄÄÄÄÄÄ	KAKKKA	XXXXXXXXX	KÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	AAAAAA
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	AAAAAAAA	AAAAA	ааааааааа	AAAAA	XXXXXXXXXX	ÄÄÄÄÄÄ	АХАХАХАХ	AAAAA	AAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	2.886E-08	0.7336	1.283E-11	0.0003	3.611E-09	0.0918	1.813E-09	0.0461	5.044E-09	0.1282	3.934E-08	1.0000
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	8.226E-20	0.0000
ÍÍÍÍÍÍÍ	iiiiiiii	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	íiíiííííí	İÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	iiiiiiiii	ÍÍÍÍÍÍ
Total	2.886E-08	0.7336	1.283E-11	0.0003	3.611E-09	0.0918	1.813E-09	0.0461	5.044E-09	0.1282	3.934E-08	1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 13

Intrisk: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=1.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhala	tion	Rad	on	Plan	=	Mea	t	Mill	k	Soi	1
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	KAKKKKKK	ÄÄÄÄÄÄÄ	AAAAAAAA	AAAAAA	AAAAAAAAA	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAAA
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAÄÄAAA	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	8.226E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
íííííííí	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	íiíííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ííííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	8.226E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=1.000E+01 years

	Wate	r	Fis	h	Rad	on	Plan	t	Mea	t	Mil	k	All pat	hways
Radio-	XXXXXXXXX	ÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAA	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
AAAAAAA	. XXXXXXXX	AAAAAA	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄ
H-3	2.886E-08	0.7336	1.283E-11	0.0003	0.000E+00	0.0000	3.611E-09	0.0918	1.813E-09	0.0461	5.044E-09	0.1282	3.934E-08	1.0000
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	8.226E-20	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	iiiiiiii	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	iiiiiiiii	ÍÍÍÍÍÍ
Total	2.886E-08	0.7336	1.283E-11	0.0003	0.000E+00	0.0000	3.611E-09	0.0918	1.813E-09	0.0461	5.044E-09	0.1282	3.934E-08	1.0000

^{***}CNRSI(i,p,t) includes contribution from decay daughter radionuclides

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 14
Intrisk: RESRAD Default Parameters File: LLNL GAC landfill.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 4.000E+01 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways Radio-Nuclide Inhalation Plant Meat Milk Soil Water Fish Plant Meat Milk Ingestion* 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.368E+01 8.190E-03 2.304E+00 1.157E+00 3.219E+00 3.037E+01 H-3 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 Pb-210 * Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil and water-dependent water, fish, plant, meat, milk pathways

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=4.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhala	tion	Plan	nt	Meat	:	Mill	2	Soil	L
Radio-	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄ	АААААААА	AAAAAA	AAAAAAAA	ÄÄÄÄÄÄ	AAAAAAAA	ХХХХХХ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	4.793E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	4.793E-20	0,0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=4.000E+01 years

Radio-	Wate ÄÄÄÄÄÄÄÄÄÄ		Fís ÄÄÄÄÄÄÄÄÄÄ	-	Plan		Mea ÄÄÄÄÄÄÄÄÄÄ	-	Mill ÄÄÄÄÄÄÄÄÄÄ		All Path	-
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	9.985E-12	0.7336	4.440E-15	0.0003	1.249E-12	0.0918	6.272E-13	0.0461	1.745E-12	0.1282	1.361E-11	1.0000
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	4.793E-20	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	iíiíiíííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	fifififif	ÍÍÍÍÍÍ
Total	9.985E-12	0.7336	4.440E-15	0.0003	1.249E-12	0.0918	6.272E-13	0.0461	1.745E-12	0.1282	1.361E-11	1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 15
Intrisk: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=4.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

	Grou	nd	Inhala	tion	Rad	on	Plan	t	Mean	t	Mill	ς	Soi	1
Radio-	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA.	ΧΧΧΧΧΧΧΧ	AAAAAA	ÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAA	ÄÄÄÄÄÄÄ	AAAAAAAA	AAAAAA	AAAAAAAAA	AAAAAA	AAAAAAAA	ÄÄÄÄÄÄÄ
Nuclid	e risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	4.793E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍÍÍ	í ííííííííí	ÍÍÍÍÍÍ	iiiiiiiii	İİİİİİ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	4.793E-20	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=4.000E+01 years

Water Dependent Pathways

	Wate	r	Fis	h	Rad	on	Plan	t	Mea	t	Mil	k	All pat	hways
Radio-	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAAA.	AÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAA	ÄÄÄÄÄÄ	AAAAAAAA	AAAAAA	XXXXXXXXX	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	9.985E-12	0.7336	4.440E-15	0.0003	0.000E+00	0.0000	1.249E-12	0.0918	6.272E-13	0.0461	1.745E-12	0.1282	1.361E-11	1.0000
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	4.793E-20	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	9.985E-12	0.7336	4.440E-15	0.0003	0.000E+00	0.0000	1.249E-12	0.0918	6.272E-13	0.0461	1.745E-12	0.1282	1.361E-11	1.0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 16
Intrisk: RESRAD Default Parameters File: LLNL GAC landfill.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As pCi/yr at t = 1.000E + 0.00E +

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways

Radio-Nuclide Inhalation Plant Most Milk Soil Water Fich Plant Milk Meat Ingestion* 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.834E-06 9.801E-10 2.757E-07 1.385E-07 3.852E-07 3.635E-06 H-3 $0.000E+00 \quad 0.00$ Pb-210

* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil and water-dependent water, fish, plant, meat, milk pathways

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=1.000E+02 years

Water Independent Pathways (Inhalation excludes radon)

	Ground		Inhalation		Plant		Meat		Milk		Soil	1
Radio-	<i>KAAAAAAAAAAAAAA</i>		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		АААААААААААА		AAAAAAAAAAAAA		<i>КА</i> ДАДАДАДАДАДАД		ΑΑΑΑΑΑΑΑΑΑΑΑΑ	
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	. XXXXXXXXX	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
н-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	1.629E-20	0.0099	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	İÍİÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	1.629E-20	0.0099	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t = 1.000E + 02 years

Radio-	Water ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		Fish Ä ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		Plan		Mea ÄÄÄÄÄÄÄÄÄ	-	Mil:		All Pathways**	
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAA
H-3	1.195E-18	0.7264	5.313E-22	0.0003	1.495E-19	0.0909	7.506E-20	0.0456	2.088E-19	0.1269	1.629E-18	0.9901
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	1.629E-20	0.0099
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	1.195E-18	0.7264	5.313E-22	0.0003	1.495E-19	0.0909	7.506E-20	0.0456	2.088E-19	0.1269	1.645E-18	1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 17

Intrisk: RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+02 years

Water Independent Pathways (Inhalation excludes radon)

	Ground		Ground Inhalation		Radon		Plan	Plant		Meat		Milk		1
Radio-	AAAAAAAAAAAAAAA		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ΑΑΑΑΑΑΑΑΑΑΑΑΑΑ		ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
AAAAAAA	ÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAAA	ÄÄÄÄÄÄ	ääääääää	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAA	ÄÄÄÄÄÄÄÄÄ	AAAAAA	AAAAAAAAA	AAAAA
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	1.629E-20	0.0099	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	iíiííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	íiíííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	İÍÍÍÍÍ	íííííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	1.629E-20	0.0099	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+02 years

Water Dependent Pathways

	Water		Fish		Radon		Plant		Meat		Milk		All pathways	
Radio-	о- ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		AAAAAAAAAAAA		ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	AAAAAAAAA	AAAAAAA	AAAAAAAAA	AAAAAA	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑ	
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	1.195E-18	0.7264	5.313E-22	0.0003	0.000E+00	0.0000	1.495E-19	0.0909	7.506E-20	0.0456	2.088E-19	0.1269	1.629E-18	0.9901
Pb-210	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	1.629E-20	0.0099
iíiíííí	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	İİİİİİ	ííííííííí	ÍÍÍÍÍÍ
Total	1.195E-18	0.7264	5.313E-22	0.0003	0.000E+00	0.0000	1.495E-19	0.0909	7.506E-20	0.0456	2.088E-19	0.1269	1.645E-18	1.0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 18
Intrisk : RESRAD Default Parameters File: LLNL GAC landfill.RAD

and water-dependent water, fish, plant, meat, milk pathways

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p)

As pCi/yr at t=1.000E+03 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways Radio-Nuclide Inhalation Plant Milk Soil Meat Water Fish Plant Meat Milk Ingestion* 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 $0.000E+00 \quad 9.334E-13 \quad 3.676E-14 \quad 1.628E-14 \quad 0.000E+00 \quad 5.722E-12 \quad 5.353E-13 \quad 4.410E-13 \quad 9.801E-14 \quad 8.044E-14 \quad 7.863E-12 \quad 7.86$ Pb-210 * Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=1.000E+03 years

Water Independent Pathways (Inhalation excludes radon)

	Ground		Inhalation		Plant		Meat		Milk		Soil	L
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		АААААААААААА		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		AAAAAAAAAAAAAAA	
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAääaa	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	5:532E-27	0.0000	0.000E+00	0.0000	6.432E-20	0.1423	2.533E-21	0.0056	1.122E-21	0.0025	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	5.532E-27	0.0000	0.000E+00	0.0000	6.432E-20	0.1423	2.533E-21	0.0056	1.122E-21	0.0025	0.000E+00	0.0000

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=1.000E+03 years

W	Water		Fish		Plant		Meat		ς	All Path	ways**
Radio- ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		AAAAAA	AAAAAAAAAAAAAA		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	
Nuclide ris	k fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
АААААА АААААА	AÄÄÄÄÄ ÄÄÄÄ	AAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3 0.000E	+00 0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210 3.046E	-19 0.6737	3.688E-20	0.0816	3.039E-20	0.0672	6.753E-21	0.0149	5.543E-21	0.0123	4.521E-19	1.0000
ííiíííí íííííí	ííí íííííí	ííííííííí	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total 3.046E	-19 0.6737	3.688E-20	0.0816	3.039E-20	0.0672	6.753E-21	0.0149	5.543E-21	0.0123	4.521E-19	1.0000

^{**} Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

RESRAD, Version 6.3 T« Limit = 180 days 02/01/2007 14:43 Page 19
Intrisk : RESRAD Default Parameters File: LLNL_GAC_landfill.RAD

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=1.000E+03 years

Water Independent Pathways (Inhalation excludes radon)

	Ground		Inhalation		Radon		Plant		Meat		Milk		Soil	
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		AAAAAAAA	ÄÄÄÄÄÄÄ	AAAAAAAA	KAAAAA	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄ	AAAÄÄAAÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	5.532E-27	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	6.432E-20	0.1423	2.533E-21	0.0056	1.122E-21	0.0025	0.000E+00	0.0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ
Total	5.532E-27	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	6.432E-20	0.1423	2.533E-21	0.0056	1.122E-21	0.0025	0.000E+00	0.0000

Total Excess Cancer Risk CNRSI(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t=1.000E+03 years

Water Dependent Pathways

	Water		Fish		Radon		Plant		Meat		Milk		All pathways	
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		<i>А</i> ДДДДДДДДДДДДДДДДДДДДД		ÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	AAAAAA	KAKKKKKK	ÄÄÄÄÄÄÄ	AAAAAAAAAAAAAA	
Nuclide	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
ÄÄÄÄÄÄÄÄ	. XXXXXXXX	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄ	XXXXXX	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	AAAAAAÄAA	ÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄ
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Pb-210	3.046E-19	0.6737	3.688E-20	0.0816	0.000E+00	0.0000	3.039E-20	0.0672	6.753E-21	0.0149	5.543E-21	0.0123	4.521E-19	1,0000
ÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍ	iííííííííí	ÍÍÍÍÍÍ
Total	3.046E-19	0.6737	3.688E-20	0.0816	0.000E+00	0.0000	3.039E-20	0.0672	6.753E-21	0.0149	5.543E-21	0.0123	4.521E-19	1.0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides